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Precision Cosmology: Calibrating the Universe
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HACC and CCF

e Architecture Challenge: HPC is rapidly
evolving (clusters/BG/CPU+GPU/MIC --)

e HACC: Hybrid/Hardware Accelerated
Cosmology Code Framework

20 PFlops

e Code for the Future: Melds optimized

performance, low memory footprint, Rgag;tllggse'r | ..?f-
embedded analysis, and cross-platform
scalability

e CCF: Cosmic Calibration Framework
e Optimal Sampling

« PCA-compression, adaptive filtering

_____ 10/L_.-_-.--------.-------------—--

e Gaussian Process Modeling

e Error validation R kl[lthlAmI] L
pC

e |nstantaneous oracle for cosmic MCMC:
.. . . . CCF: Heitmann et al 2006, Habib et al. 2007,
Statistical inference in hours instead of Heitmann et al. 2009, 2010, Lawrence et al.
decades 2010, ---
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Cosmic Frontier Computing Collaboration: CFCC

e Cosmic Frontier
Computing at NERSC:

CFCC gets major 6 e. ‘ h
computing allocation at
NERSC/LBNL g'-ﬂ\'

. SciDAC Call: Major Argonne
proposal submitted in e (ereeer ‘lll

partnership with SciDAC

ASCR Institutes *
3

e | abs as National Hub: Ferm'lab
Unique opportunity to build Bnooxﬂﬂ‘,ﬁ"

effort to provide | NATIONAL LABORATORY
simulations and analysis

tools to the CosmOIOgy Cosmic Frontier Computing Collaboration
community S. Habib (ANL, Spokesperson), A. Slosar (BNL),
S. Dodelson (Fermilab), P. Nugent (LBNL),
R. Wechsler (SLAC)
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Summary: Latest Developments

e Architecture Challenge: New algorithms
implemented on IBM BG/P at ALCF, code scales to
the full machine (160K cores); first cosmology code
to scale on a Blue Gene system

e ALCF/MCS Collaborations: Intensive
collaborations with CS researchers; 1/0O,
performance, new architectures, visualization,
workflows, large data

* Joining DES: Weak lensing, clusters, --

e LSST: Started membership process with Tony
Tyson, members of Science Working Groups

e ANL LDRD: Supports interactions across the Lab,
HEP with ALCF/MCS (SciDAC is future path for this)

e Strategic LDRD: Large data initiative at ANL,
another future direction for HEP interaction with
ASCR

e NASA Theory Award: Supports Post-Doc

Mira: First 2 racks are here!
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Group Overview

 Primary Target of Group Research:
Cosmological signatures of physics
beyond the Standard Model

e Structure Formation Probes: Exploit
nonlinear regime of structure formation

 Discovery Science: Derive
signhatures of new physics, search for
new cosmological probes

* Precision Predictions: Aim to
produce the best predictions and error
estimates/distributions for structure
formation probes (rough analogy with
lattice QCD)

 Design and Analysis: Advance
‘Science of Surveys’; contribute to
major ‘Dark Universe’ missions:
BOSS, DES, LSST, BigBOSS,
DESpec --

Y
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Cosmological Probes of Physics Beyond the Standard Model

e Dark Energy: Properties of DE Y .
equation of state, modifications of N WHAT RIS vave)
GR, other models? '
Sky surveys, terrestrial experiments

e Dark Matter: Direct/Indirect
searches, clustering properties,
constraints on model parameters |
SKy surveys, targeted observations, Fermi (gamma ray) SDSS (optical)
terrestrial experiments KR, T I

 Inflation: Probing primordial
fluctuations, CMB polarization, non-
Gaussianity
Sky surveys

e Neutrino Sector: CMB, linear and : ) .
nonlinear matter clustering Explosion of information from

Sky surveys, terrestrial experiments Sky maps: Precision Cosmology

S
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Precision Cosmology: “Inverting” the 3-D Sky

e Cosmic Inverse Problem: From sky
maps to scientific inference

Ul+1)0/ 2

e Cosmological Probes: Measure
geometry and presence/growth of
structure (linear and nonlinear)

o Examples: Baryon acoustic oscillations
(BAO), cluster counts, CMB, weak
lensing, galaxy clustering, --

e Cosmological Standard Model: Verified
at 5-10% with multiple observations

Future Targets: Aim to control survey
measurements to the ~1% level

The Challenge: Theory and simulation

must satisfy stringent criteria for
inverse problems and precision
cosmology not to be theory-limited!
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Structure Formation: The Basic Paradigm

e Solid understanding of structure
formation; success underpins most -
cosmic discovery

e Initial conditions laid down by
inflation

‘Linear’

e |nitial perturbations amplified by
gravitational instability in a dark
matter-dominated Universe

e Relevant theory is gravity, field
theory, and atomic physics (‘first

principles’) = .

O - &

o Early Universe: Linear perturbation 2 kg é

theory very successful (CMB) = g

o Latter half of the history of the gg% )
Universe: Nonlinear domain of B |

structure formation, impossible to ,

treat without large-scale computing 135790 2

S
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Cosmic Calibration: Solving the Inverse Problem

e Challenge: To extract cosmological
constraints from observations in the

nonlinear regime, need to run Markov

Chain Monte Carlo; input: 10,000 -
100,000 different models

* Brute Force: Simulations, ~30 years
on 2000 processor cluster ---

e Current Strategy: Fitting functions,
e.g. for P(k), accurate at 10% level,
not good enough!

e Our Solution: Precision emulators

Optimal sampling

’

CosmicEmu
- publicly available

. emme
_,..-:f' -n

£ 4
-

Prediction/Sim

k [h/Mpc]

Heitmann et al. 2006, Habib et al. 2007

S

Design optimal simulation

campaign over (~20)
parameter range

Run suite of simulations
(40,100,...) with chosen
parameter values

Statistics Package
(Gaussian Process
Modeling, MCMC)

Calibration Observation
Distribution input

Response

surface;
emulator

Predictive

Distribution

Modeling/Sims; Observations;
Observations+Modeling

Model
inadequacy,
self calibration
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Lf)cating the DOE HEP Computational Cosmology Program

e Resides as a core

capability program
within DOE HEP Broader Research Community

e Contributes to I

‘discovery space’

o Catalyzes development
of concepts into

projects New Concepts

e Plays a key role in
project optimization

: Key Contributions
e |Is an essential

component of the
‘Data to Science’ step
for projects

. , Science Data
e Functions as a major

community resource Project Cosmic Frontier
research loop

Project Design

Phase

F#TER ULS. DEPARTMENT OF
CA ;
N4
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'DOE HEP Computational Cosmology Program Advantages

o Key Roles

e One-point contact for scientists,
projects, and programs

e In-house theory, modeling, and
simulation capability

« Connection to HEP computing  and project
task division

o Efficient collaboration, ability to
work to milestones/time tables

e Repository of ‘Lessons Learnt’ and
‘Best Practices’ (crucial in precision
cosmology)

e Continuous development paths

e Develop and maintain simplified
‘detector model’ views of project
space (hunt for subtle signals)

e Connections across projects (joint
analyses)

Notional theory

v
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e = U.S DEPARTMENT OF
J; ENERGY
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