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Secondary Electron Yield

= Testing Technique

— We have incorporated XPS, UPS, Ar-ion sputtering, and SEY measurements into one
high-vacuum system

= Tested Materials
— Al,O5 and MgO for emissive materials
— Au for calibration of our system
= Electron-Dose Effect
— Emission changes as a function of electron fluence

— Exploring different techniques to examine what’s changing
* Chemistry and composition
* Morphology

= Discussion and Summary



SEY Testing Setup

=  Low energy electron diffraction (LEED) setup
— Electrons are emitted at constant energy (950 eV)
— Sample is biased using a computer-controlled Keithley Sourcemeter
— Bias is adjusted to allow for primary electron energy ranges between 0 and 950eV
— Beam current (I, ) is determined at beginning of scan and set as a constant
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Secondary Electron Yield (per primary)
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Art-ion sputtering affects both surface composition and morphology

— Cand O, as well as unobserved surface features, may be responsible for the difference in
secondary electron yield
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Secondary Electron Yield (per primary)

Gold Standard
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Results are comparable to literature and calculations
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Gold Standard

UPS spectrum using 21.22 eV helium emission and a -50V sample bias

5d;,, located at ~4.3eV binding energy (with respect to E;)
5d,,, located at ~6.1eV binding energy (with respect to E;)

Work function = 4.42eV (does not account for detector ‘work function’)

Previous tests have shown analyzer resolution of about 1eV
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MCP Secondary Electron Emission Materials

= Films are deposited using Atomic Layer Deposition (ALD).

= Deposited on conductive Si substrates.

= Various thicknesses have been and will continue to be studied.
= So far Al,O,; and MgO have been tested.



Secondary Electron Yield (per primary)

Al,O; Emission vs. Thickness and Electron Fluence

*Al,O, was provided by Jeff Elam’s group (Qing, Anil)
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Al,O; Emission vs. Thickness

Selected Data Averaged

Si substrate may affect
SEY, especially for
films less than 10nm

Long-term monitoring
or high-fluence electron
exposure will determine
the final values of these
curves.
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XPS of AlO,
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Secondary Electron Yield (per primary)
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MgO

= Not nearly as large of a - . - . - .
difference between samples * el

__‘s‘.’--‘.

as was seen in the Al,O,
samples.

= This experiment should be
pursued further to determine
If the similarity in emission is
real.

= Examining the electron-dose
effect may help us here
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XPS of MgO

Presence of multiple carbon compounds are evident

— One is most likely a carboxyl, based on double oxygen peak near 531 eV
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Overall Comparison

| | ! | |
= MgO is clearly a better "
emitter, especially for higher & *° )
primary electron energies. § 40- n
= With the amount of variation & 354 .
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Electron-Dose Effect

— Emission decreases with increased fluence
= MgO

— Emission increases with increased fluence

= We will explore why this is the case initially using XPS and SEM

— [Focused electron beam from LEED system does not cover a large enough area for our
XPS system to detect any chemical or compositional changes.

— Defocused electron beam from separate gun has been used.
« However, an unexpected increase in fluorine is observed in XPS spectra for electron exposure.

= Mass spectrometry should be used to detect material liberated from the sample



Ultraviolet Photoelectron Spectroscopy
of Al,O, and MgO

= Valence band edge
— MgO -6.97eV
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Future Work and Additional Techniques/Equipment

= Preparing for large-area, electron bombardment
— Monitor and study does effect

= Will monitor SEY as a function of sample temperature

= Writing control software (LabView) to integrate all systems into one control system

— lIdeally, we would like to have complete control over the lens system for the
hemispherical analyzer

— Optimize energy resolution of XPS and UPS
= Designing/preparing new sample holder that is compatible with transmission
photocathodes, sample heating, and can hold at least one sample for long term
storage (faraday cup)
= Exploring options for Secondary lon Mass Spectrometer (SIMS)
— Examining of doping profiles in photocathodes
— Programmable thermal desorption
— Electron stimulated desorption



