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INTRODUCTION

Over the past 22 years we have done about 3000 cold cavity tests on more
than 600 different cavities at Jefferson Lab. Most of these tests were done
with voltage controlled oscillator based phase locked loop systems. In
addition to doing many of these test myself, I have been involved with the
development, construction and commissioning of several cavity test systems
and the software used to control them.

My hope today is to provide you with a basic understanding of the RF
systems necessary to perform these tests. | hope you leave here with an
understanding of the importance of calibration processes and the control
and understanding of potential error sources. | will also provide some
Information relating to the practical aspects of operating SRF cavities in
real machines.

The bulk of the cavity testing work as well as a complete set of equations
necessary for calculating the cavity parameters and errors to those
parameters may be found in a paper that was included as part of the SRF
2005 workshop proceedings.

.‘leffer%nn Lab



OVERVIEW

 Voltage controlled oscillator based phase locked loops

RF system overview for vertical testing.

RF system overview for cryomodule testing.

Coupler conditioning vacuum-RF feedback loop.

Cavity resonance monitor
e Cable calibrations

« Cable break down in low pressure helium systems.

Basic RF equations for critically coupled cavities.

Basic RF equations for over coupled cavities.

Qo measurements for cryomodules.

Practical operational aspects of SRF cavities.
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« Two fundamental ways to drive a cavity.

 Fixed frequency systems are used in conjunction with resonance controls like
motorized tuners when operating fixed frequency systems in accelerators.

 Variable frequency systems are used to simplify the system or to test cavities
which do not have tuners attached.

 During vertical testing cavity bandwidths on the order of 1 Hz are not uncommon,
it would be extremely difficult to maintain the cavity’s frequency while testing.

« At Jefferson Lab we commonly use voltage controlled oscillator based phase
locked loops to track the cavity frequency during the test.
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» The front end generally makes use of a low noise amplifier and a series of variable

attenuators which are used to:
o Keep the mixer RF level below the maximum level, typically 6 dB below the design LO.
» Ensure that the mixer and following loop amplifier, crystal detectors, etc. are not power

starved.
» Help to avoid loop oscillations.

* The loop gain is proportional to the cavity gradient. Thus a system that behaves
well at 2 MV/m will very likely oscillate at 20 MV/m, unless the loop gain is
reduced at higher gradient.

« Although difficult to find. Limiting amplifiers such as AmpliTec APT3-01000200-
1515-D4-LM extend the dynamic range of the system while preventing oscillation.
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BASIC VCO-PLL
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* The mixer can be a simple double balanced mixer. Devices such as a mini circuits
ZFM-150 are perfectly adequate.

* The mixer IF output must go to DC.

» Typically you are limited to somewhere between 7 and 13 dBm mixers by the
output level of VCO.

« Higher IP3 mixers could be used at the cost of a larger amplifier between the VCO
and the LO input. This would provide a better dynamic range.

 Part of the function of the low pass filter is to reject the second harmonic
component of the mixer output.
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bandwidth of the filter is typically 20 kHz.

The secondary function of the low pass filter is to reduce the noise. To that end the

» The variable gain amplifier circuit is used to adjust the loop gain.

« At the summing junction a center frequency adjustment signal is summed with the
output of the loop amplifier, typically we use course and fine ten-turn

potentiometers.

* In addition to a custom circuit designs, a Stanford Research SR560 can be used to

iImplement the loop amplifier and filter blocks.

NOTE: If a general purpose frequency source is used for the VCO the loop gain can be measured
by manually adjusting the frequency by a fixed amount (i.e. 200 Hz) and measuring the shift
in the loop frequency. The gain is the quotient of the two. Gains over 100 are considered

acceptable.
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Inexpensive broad band devices are available from Mini Circuits for about $50.
Minus — These have very high tuning sensitivities on the order of 3 to 30 MHz/V.
Minus - With a wide frequency range they will be more susceptible to temperature induced drifts.
Plus — They can be used over a broad range without retooling.
Plus — Low cost

*Customized VCOs with thermal stabilization an narrow frequency ranges for about $1500
Plus — Low bandwidth crystal based devices are not sensitive to temperature drifts.
Plus — Moderate cost.
Minus — Can not be used to tune to the different pass band frequencies.
Minus — Narrow band required for different cavity frequencies.

RF source based VCO such as an Agilent E4422B for about $12,000.

Plus — Low bandwidth to reduce noise issues

Plus — Flexible and stable frequency source

Plus — Has simultaneous AM modulation capabilities which are useful for cavity conditioning, etc.
Minus — High cost device.
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 Directional coupler.

» Coupling dictated by a combination of VCO output level and Mixer LO requirement.

* LO path may require an amplifier to ensure the proper drive level for the mixer.
» Phase Shifter*

» Typically mechanical phase shifters are used such as Narda 3752 or Arra D3428B .

» Ensure that they provide at least 190 degrees of phase shift at the frequency of operation.
» Variable Attenuator*

» Typically both continuous and step mechanical attenuators are used for manual systems
Narda, Arra manufacture both. Caution should be used if a PIN attenuator is used as it
will strongly affect the loop phase

*Vector Modulators are frequently used to supplement the phase shifter and replace the

mechanical attenuators.
» Analog Devices as well as several other manufactures produce integrated circuits with
analog controls
* GT Microwave, and others make connectorized devices with digital controls.
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OPTIONAL TOPOLOGY
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e Problems:

» Vector modulators and electronic phase shifters can introduce
attenuation as a function of phase settings.

» This is especially true for analog vector modulator where one can easily
see changes in amplitude of 1 dB as you shift the phase a few degrees.
Especially around 0°, 90°, 180°, and 270°.

» Solution: (lIdea seen at INFN Legnaro)
* Move phase shifter from the output path to the feedback loop which
drives the local oscillator port on the mixer.
* Insure that the nominal mixer input level is 2 dB or 3 dB higher than
nominally necessary so that amplitude variations in the phase shifter do
not in negatively impact operations
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PLOT OF PHASE AND AMPLITUDE ON CAVITY
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The phase lock loops locks on the zero crossing. Closing the loop switch when you
are 180° out of phase will cause the system to drive away from the lock point.
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Complete Low Level System Layout
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Complete Low Level System Layout

FROM ANALOG 1/O PORT
(ONE ANALOG, ONE DIGITAL)

T o] ————— " " ~1 The transmitted power network has a switchable LNA and variable
| SWITCH| [ | INTERPACE PCB .~ attenuator, both can be controlled by the computer
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The 6 dB pad before the LNA ensures that there is a minimal gap in

. The phase shift associated with the PIN attenuator was measured and
included as a lookup table in the program. The compensation values

f are factored into the vector modulator algorithm.
o Circulators are used to reduce the mismatch and ensure more stable
Y 10 dB . . - - -
PN o 1 power meter calibrations. The 10 dB attenuators used in the incident
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COMPLETE LOW LEVEL SYSTEM LAYOUT

The VCO was moved to an external

EXTERNAL
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stabilized. This also allows us to use
alternate VCOs.

\
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used for amplitude and phase control.
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All crystal detector signals are buffered
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INTERLOCKS FOR VERTICAL TESTS

» During vertical testing medium power amplifiers USER SUPPLIED

between 100 W and 500 W are used to drive the o AR

cavities. PSS HPRF o

» No cavity protection interlocks are used during these %
tests at Jefferson Lab. Each facility and test should be  contRoL
evaluated individually. D e Q PSS HPRE

» Field emission radiation does present a safety hazard.
This is mitigated during vertical testing at Jefferson
Lab by using one of 6 shielded vertical dewars.

SW2

» High power RF can not be applied to an accelerating
structure until the PSS system confirms that the
dewar shield lid is closed.

RF SWITCH UNIT
(CONFIGURATION ‘
B I R R

CONTROLLED)
q PL pss q P2 q P3 q P4

» Low power, less than 1 W, must be applied to the LRF |
system in order to calibrate the cables. AC ()

ol
!

. . . LLRF FROM HIGH POWER RF
« A switching system shown here was implemented to CONTROL TO DEWAR

perform these functions for “R&D” testing. ROoM FREQ DEPENDENT CIRCULATOR

« Asimilar switching system, along with dewar selection
switches and permanently installed cables, was
implemented for the production system.
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CRYOMODULE TEST SYSTEM LAYOUT
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CRYOMODULE TEST SYSTEM LAYOUT
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M —Ilsw/| [recay] " Due to the excessive costs to recover from a coupler
@ o ‘ - failure. Full interlocks were implemented for the

| 6dB RFINTERLOCKS

system, including:
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*Arc
ittty iodE eInfrared
@ * o «Coupler and cavity Vacuums
1 LF | Helium pressure and level
| D | «Coupler cooling water flow
g—» — Use of _the interlocks was mandatory for all high power
~ b e | Operations.
@ (F — " Boonton 4532 pulsed RF power meters were used to
| | | acquire waveform records of the pulsed RF power data.
@ _— . Asoftware interlock was added based on HOM coupler
i > . power levels
@ N 2% ' “Circulators added to ensure that user changes to the
S " other outputs would not affect calibrations.
1 :) 4-Way splitters added so that the RF signals could be
95@ V/ used by other systems in parallel with the standard data
o > ' acquisition process.

Computer controlled and automatic data acquisition was
necessary for calibration of the field probes using an

emitted power technique.
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CRYOMODULE TEST SYSTEM LAYOUT

1 PSS . CAVE
Personnel safety system provides a permit to allow . AcPwR. - |
high voltage operation of the klystron. Operations at | > |
less than 1 W allowed without a PSS interface. NI iy, '\ dods 4048
—{ | Mo 2R

Waveguide directional coupler placed in the middle | HIGH BAY (KLYSTRON

of a 4 m run of waveguide in order to avoid errors
due to evanescent modes.

Attenuators were distributed throughout the system /
U

in order to reduce the susceptibility to standing wave
induced errors.

FOWARD POWER 20dB

10 dB*

REFLECTED POWER

Polyphaser B50 or MR50 series lightning arrestors i

were added to the HOM ports after several RF power |

heads and medium power attenuators (20 W-CW and |

500 W-PK) were destroyed. Excessive power was
observed on a crystal detector when a cavity had a \E@ PROBE POWER )i, 1o@aw

thermal quench.

At times during the SNS testing a 20 kW CW
klystron was substituted for the 1 MW pulsed
klystron. Stub tuners and iris plates were used to |
modify the input coupling of the system. Maximum  ,.cx oroer vooe acoupler power 1. 104820

L AN
CW power levels were limited by the coupler power | T
CapaCIty 'HER ORDER MODE B-COUPLER POWER \ : 10 dB 20 Wv
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VTA TEST SYSTEMS
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Chassis from 805 MHz
production system.

500 to 1000 MHz
VCO-PLL System
used for SNS Production

500 to 3,000 MHz

VCO-PLL system used for
B research and development
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VERTICAL TEST AREA TESTING PROGRAM
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CRYOMODULE TEST FACILITY CONTROL ROOM
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CRYOMODULE TESTING PROGRAM
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DIGITAL LLRF SYSTEM FOR VERTICAL AND HORIZONTAL TESTING

™ e
* Digital low level RF systems (LLRF) have become common in

accelerator applications.

= Digital LLRF systems can be used in a Self Excited Loop

mode to track the frequency of a cavity.

e JLAB has in the process of implementing such a system in the Cryomodule
Test Facility where the cavity bandwidths are 100’s to 1000’s of Hz.

* We have locked cavities and done decay time constant measurements for
the wider bandwidth cavities using a digital LLRF system.

* We have not attempted to lock to a cavity with 1’s of Hz of bandwidths (i.e.
VTA tests)

= Concerns/drawbacks.

e Limited frequency range, typically <100 kHz before you have to
change your LLRF clocking frequencies.

e Limited dynamic range of the front end electronics and ADCs which
limits accurate RF Power measurements and the ability to lock at
very low electric fields.
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VACUUM CONDITIONING CONTROLLER

<
—]
KLYSTRON
RF SOURCE W g PROTECTION —> EEESLI — -I(—IEESL-II_—
- PIN ATTN PIN SWITCH CIRCUITS
VACUUM KLYSTRON
GAUGE * 2 CONRI'FROL —
CONTROLLER < .
LINEARIZATION ARC, COOLING WATER, ETC

VACUUM | CIRCUIT INTERLOCKS
GAUGE 2.
CONTROLLER 4 VACUUM
|

CONTROL

-5v

VACUUM

|
SETPOINT —PF— VACUUM
READBACK \ GAIN

|
V-V READBACK

» System uses analog vacuum signal to control the drive level for a klystron. When the
vacuum signal increases the PIN attenuator reduces the RF Drive signal

» Diode adder ensures that the larger of the two vacuum signals controls the feedback.
» Separate vacuum set point and gain control with analog read back

* Redundant switching of RF in the event of an interlock fault.

» Ones of millisecond response time achieved. Limited by vacuum gauge controller.

» Phase shift associated with PIN attenuator may cause problems when operating a

cavity with aVCO-PLL.. The Hittite HMC473M although more difficult to bias has
a very low phase shift over a 30 dB range.
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CAVITY RESONANCE MONITOR

\ a
| dt  4Q
! < dt
RF@ LO /W L L “ 1kHz
cos(agt + o(t)) 0 J l @ # do(t)
SR 6 e cos(at) o O
' RF LO W L - :. di
Iy “at
| dQ
Q \ dt

A cavity resonance monitor is a system which provides an output signal which is
proportional to the difference in frequency between the input signal and a reference
source.

They are useful for making accurate microphonic measurements in time domain.
The front end circuitry requires careful tuning to ensure precise 1/Q demodulation.

The limiting amplifier is used to stabilize the gain in the system. Without it a separate

power measurement would have to be made in order to calibrate the output signals.
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CAVITY RESONANCE MONITOR

Define the input signal to be cos(a)ot + go(t))and the reference signal be cos(w,t).
Passing the input signal through the 90 degree hybrid provides the following:
i =cos(amt +o(t)) and q=sin(ayt +e(t))
after going through the respective mixers

| = cos(myt + o(t) )cos(ayt) = %cos(go(t))+ %cos(Za)ot +¢(t))and

Q =sin(ayt) cos(myt) = %sin(Za)ot +o(t))- %sin(go(t))

Going to base band eliminates the sum frequeny terms. To simplify let @, = @, — o,

dl co(t) dQ 1 do(t)

i 2 sin(g (t)) and T2 cos(p(t)) "
dQ d 40() : co(t)
B +Q8 dt = —cos’(p(t)) =, = —sin*(p(H) =~
19218 = —(cos2(<o<t))+sin (o)) g”“)

Id_QJerI :dgo(t)
dt dt dt
which is equal to the frequency as a function of time
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CAVITY RESONANCE MONITOR

A cavity resonance monitor is calibrated by using two stable sources with
a common reference signal. The frequency on one sources is varied and
the difference in output voltage is recorded.

« An alternate method when using a relatively stable cavity is to shift the
frequency of the reference sources slightly and measure the subsequent
shift in output signal.

* One of the problems with an analog resonance monitor is that mixers are
not ideal. At higher frequencies of I and Q, the second harmonic
components bleed through to the output giving false frequency content.

« A new DSP based system was developed at Jefferson Lab, which was used
to demonstrate such a system. Using a CORDIC algorithm for phase
determination and a high resolution analog to digital converter eliminated
the need for the difficult to find limiting amplifier; simplifies the
calibration process and eliminates gain drifts.

* The phase component of a generator driven, digital LLRF system can
also be used to calculate the microphonics.
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CRM EXAMPLES
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CRM EXAMPLES
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Vibrational modes excited by the sudden loss of cavity gradient due to a window
discharge on the cavity side of a cold window in the same cavity as the previous slide.

2
DISTRIBUTION STATE A _!EffEf'SDl"I Lab

T. J. Powers[ | 2009 Energy Recovered Linac Workshop [ | Ithaca, NY



CRM EXAMPLES
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CABLE CALIBRATIONS

e Accurate consistent cable calibrations can make or
break a test program.

* VSWR mismatches in the RF circuits will cause errors to “appear” when the
frequency is shifted or the load mismatch changes.

» Cable calibrations for cavity testing are complicated by the fact that one or more
of the cables are only accessible from one end.

* In a vertical test the incident power cable, the field probe cable, as well as any
HOM cables all have sections that are in the helium bath.

* In cryomodule testing the field probe cable and any HOM cables have sections
of cable that are within the cryomodule.

* When possible cables should be calibrated using signal injection and measurement
at the other end using either a source and power meter combination; or a network
analyzer.

» Cables should be measured at or near the frequency of the test.

* The only way to measure the losses of a cable within a cryostat is to do a two way
loss measurement either with a calibrated network analyzer or a source, a
circulator and a power meter.
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ONE WAY CABLE CALIBRATION

 To calibrate the cable from point A to point C.

RF DRIVE reriectep | © Measure the one way loss of cable B-C.
SOURCE METER « Measure the reference source power level with the reference
G power meter. (P1)
TRAP'\'OSV“V/”ETRTED 'ﬁ%'\?VEE';T » Connect the reference source to point B of cable B-C.
METER METFER » Measure the power level with the transmitted power meter. (P2)
J * The one way loss is P1-P2 (dB)
R e ~— -« Measure the two way return loss of cable A-B
30dB q j‘ ) .
TYPICAL | | » Connect the reference source to the input terminal of the
REFERENCE circulator.
B E T\),.OEVTVEES » Connect the reference power meter to the load port on the
= = circulator.
A REFERENCE » Record the reading on the reference power meter with the output
SOURCE port of the circulator open.* (P3)
» Connect the output port of the circulator to port B of cable A-B
S and record the reading on the reference power meter. (P4)
» The two way return loss is P3-P4 (dB)
- » The cable calibration between for the A-C path is
Cac = (P1-P2) + (P3-P4)/2.
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TWO WAY CABLE CALIBRATION

» To calibrate the cable from pointDto Fand D to G
» Measure the forward power calibration from E to F

» Connect the reference power meter to point E of the cable from the RF drive
RF DRIVE REFLECTED
rower | source. | | |
<— ¢ Turnon the RF drive source and increase the power until the power level on the
TRANSMITTED INCIDENT reference power meter is about 2/3 of the maximum allowed.
POWER POWER . .
METER METER * Record the power levels on the reference meter (P5) and the incident meter (P6)
C F . .
J » Measure the reflected power calibration from E to G
S S F o ~ o Turn off the RF source drive
Tveear ‘ j » Measure the reference source power level with the reference power meter. (P7)
REFERENCE » Connect the reference source to point E of the path E-G.
: . METER « Measure the power level with the reflected power meter. (P8)
) wrerence | © Measure the two way loss for the cable D-E with a detuned
SOURCE CaVIty.
REFERENCE » Connect the RF drive source to the cavity at point E.
CIRCULATOR e Turn on the RF drive source and apply power to the cavity at a frequency about
5 10 to 20 kHz higher or lower than the cavity’s resonant frequency.
» Measure the incident (P9) and reflected power (P10) with the respective meters.

» The cable calibration are:
Incident Cy_ = (P5- P6 +P7-P8-P9 +P10)/2 (dB)
Reflected Cpy_g = (- P5 + P6 + 3*P7 - 3*P8 — P9 + P10)/2 (dB)
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CALIBRATION VERIFICATION

= Two ways that | use to verify calibration procedures are to:

= Calibrate the system using an external cable rather than a
cable within the dewar then:

e For field probe power and reflected power inject a known signal
level into the external cable and measure the power using the
calibrated meter.

e For the forward power connect the external cable to a remote power
meter and measure the power using the remote power meter and
the system power meter.

= |n both cases it can be a useful exercise to vary the
frequency over a 1 MHz to 2 MHz range and compare the
values over the range.

DISTRIBUTION STATE A
T. J. Powers[ | 2009 Energy Recovered Linac Workshop [ | Ithaca, NY

.jeffer%nn Lab



CALIBRATION VERIFICATION

= A third way to verify the calibration and look for VSWR
problems in the incident power cable is to:

e Use the RF drive source to apply power to either an open test cable
that has been calibrated or a detuned cavity.

e Measure the calibrated forward and reflected power. They should
be equal.

e Vary the RF frequency by +/- 1MHz in 100 kHz increments.

= Variations in the ratio of forward to reflected power indicate
a VSWR problem within the cabling system.
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MEASUREMENT OF VSWR INDUCED ERRORS

4.0%

2.0% ——

| M e o P
0.0% p—p—n—8—8— :’:!-—_—_-t

-2.0% —

—

-4.0% )

-6.0% /

-8.0%
804.00 804.25 804.50 804.75 805.00 805.25 805.50 805.75 806.00

Fregency (MHz)
Difference between RF readings calibrated at 805 MHz and those taken at nearby frequencies
for several different signal paths. The paths with smaller errors had attenuators distributed
throughout the signal path.

Difference from 805 MHz value
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VERTICAL AND HORIZONTAL TESTING

* During production cavities are generally tested using antenna inserted into the
fundamental power couplers or one of the beam pipes. The goal is to have the
cavity at or near critical coupling for these tests. In this way a minimum amoun
of power can be used to reach design gradient. Ideally this means just enough
power to overcome the heat losses in the cavity and the power coupled out of the
other ports. This has the advantage that the power lost to wall heating can be
calculated based on RF measurements.

* In most labs these tests are done in vertical test dewars, hence they are
commonly called vertical tests.

» Cavities in a cryomodule are typically tested using the production couplers that
are strongly over coupled. This presents a problem as the errors in lost RF
power get excessive when 95% to 99.9% of the incident power is reflected back
out of the fundamental power coupler.

* During cryomodule tests the RF heat load is measured calorimetrically.
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FUNDAMENTAL TERMS

r/ Q Shunt Impedance* Q/m T Operational Temperature K
G Geometry Factor Q Mesid Residual Surface Resistance
E Electric Field V/m Q0 Intrinsic Quality Factor
L Electrical Length m Qppc | Fundamental Power Coupler Q
@ Cavity Frequency s1 Qrp, Q, Field Probe Coupler Q’s
U Stored Energy J RC Coupling Impedance Q/m
I Surface Resistance Q 1, Beam Current A
TC Critical Temperature K | M Matching Current A
Py RF Power at port X w Pdisp Dissipated Power W
Pamit Emitted Power W T Decay Time S
R Shunt impedance Q S Geometric Coupling Factor

*Beware that there are different definitions for shunt impedance in use. At
Jefferson Lab we use R = V4/P that includes transit time factor for p=1
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FUNDAMENTAL EQUATIONS

_ E°L
(r/Q)wo
Uw, E’L

- Q  Q(rQ)
QO = G / rS ”QFieldEmissionEIectronLoading

2

r, ~10-4(QK /GHzZ)f—e‘l'%T Trr
T

= Q|| Qepc || Qep = Qppc
RC :QL(r/Q)
l,, = E/R.
1 1 1 1
=—+ +
Q. Qo Qrc Qp
Q-Q
P Q.
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FUNDAMENTAL EQUATIONS

Power levels for a strongly over coupled cavity, including beam loading but no microphonics:

delivered to beam LEI
2
needed from the klystron LE+IRc) 1 L (E+1Q.(r/Q)f
4Rc 4QL(r/Q)
LE-IRcY 1 L

(E-1Q.(r/Q)y

reflected to the circulator ==
4R¢ 4 QL(r/Q)

Time dependent, complex diferential equation where K is the incident wave amplitude

in v/ Watts, wy is the (time varying) detune angle, and w; = @y /2Q, :

jed g LAE_oR /R_C_RCT
C()f a)f dt L

One addition to the standards is the equation for the power required for cavity center
frequency f, detuned by of and beam current, 1, off crest by yg :

2

L +1 o .

Pciystron = > *(ﬁ4 )*{(E+ loRe cosyg f +(2QLf_E+ loRc S'”l//Bj }
C p 0
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BASIC EQUATIONS

The following are basic equations relating to coupling factor, .

1-Cyg \/Preflected ! Bincident

1+ Cﬁ\/Preercted / Bincident
where C 5 is1for under coupled and -1 for over coupled

p =

In the case of a strongly over coupled cavity

Inthecase f >>1, Q << Qq,0rQpp thus Q| = Qppc
QL =27t

/
E2 - —(1iﬂﬂ) incident QL 4 LQ)

r/
E~ \/4PincidentQL ( LQ)

Although using the forward power to calculate gradient is a reasonable technique, practical experience
says that there can easily be as much as 25% difference between the gradient measured using this
technigue as compared to the that measured using the emitted power technique or using a well calibrated
field probe measurement. This difference can be reduced by properly tuning the phase locked loop, for a
variable frequency system or the cavity for a fixed frequency system.
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EMITTED POWER MEASUREMENT

THE REFERENCE MEASUREMENT FOR STRONGLY OVER COUPLED CAVITIES

Consider what happens when you suddenly remove the incident RF power from a cavity
that has the stored energy U. This stored energy leaves the system through dissipation
due to wall losses, i.e. Q losses, and as RF power that is emitted from all of the RF ports

in the system. Since Q, << Qp and Q; << Q, in a strongly over coupled
superconducting cavity the stored energy can be calculated as:

o0 o0
U= _[ Pemitted (D)dt = I Preflected (t)dt
t, t

0

Historically value of U was measured using a gating circuit and an RMS power meter. In

a sampled system, such as can be done with a Boonton 4532 pulsed power meter, the
stored energy can be approximated by:

N
U~ Z (Preflected )iAt

m
Where m is the sample point where the incident power is removed and N is the total

number of sample points. In addition to the errors associated with the power
measurement, there are errors in this measurement which are introduced by the sampling
system that can be reduced by proper choice of system parameters.
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EMITTED POWER MEASUREMENT UNCERTAINTY
e _
The uncertainty in the stored energy is given by the following:

AU =U \/ACI-% T AI:)(?AL + At(N —m)CRPrin + (APemitted )m At + 7(Pemitted )N
Where :
ACp is the percentage error in the power reading due to the cable calibration errors and
APcpL 1S the error in the power meter calibration.
At(N —m)CgPyyin 1S the contribution of the power meter noise floor during the integration.
_ (APqmitted Jm At is due to the jitter in the start of the
integration and the peak of the emitted power transient

7(Pemitted )N 1S the error introduced because you only
/" summed the series to N and not to oo

The last two errors can be minimized by sampling
the system at a high sample rate compared to the
decay time and insuring that that (m-N)At is greater

than 4 decay time constants.
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FIELD PROBE CALIBRATION

Once the stored energy has been determined the gradient can be calculated by using
the following:

r/Q
E Emitted = \/Zﬂfo *U *T

Where the emitted subscript is just an indicator of method used to determine the
value. The filed probe coupling factor, Qgp can the be calculated using:

2
EEmitted & L
Prransmitted )m—l r/Q

QFP:(

Where P1,ansmitted 1S Sampled just prior to removal of the incident power signal.
Normally an average of several points just prior to m is used for this value.

With good calibrations and proper sample rates the gradient, E, can be measured
with an accuracy of 5% to 7% and Q of the field probe to about 10% to 12%.
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Qo MEASUREMENTS STRONGLY OVER COUPLED

When making a Q, measurement on a cavity that is strongly over coupled the
dissipated power must be measured calorimetrically. To do this:
* The inlet and outlet values on the helium vessel are closed
» The rate of rise of the helium pressure is measured under static heat load.
» The rate of rise of the helium pressure is measured under a heat load of static plus

known resistive power.

» The rate of rise of the helium pressure is measured under a heat load of static plus

unknown cavity dissipated power.

» The following equation is used to calculate the unknown cavity dissipated power.

PDISSIPATED = (

PHEATER

where (Z—Tj IS the rate of rise of the pressure under the different conditions.

.‘leffer%nn Lab



QO MEASUREEMENTS CW WITH BETA NEAR 1

When making a CW measurement of Q4 on a cavity that is near critical
coupling the dissipated power is calculated as the forward power minus the sum
RF power leaving the system either as reflected power as it exits the field probe
port, HOM port, etc. The error stack up is given as the following:

APpisp _ (Aplncident )2 T (Apreflected )2 + (APtransmitted )2

_ 2
I:)DISID (Pmcident — Prransmitted — Preflected )

25%
I
0% \ As was stated earlier, B is a measure of the
\ / magnitude of the reflected power as compared to
15% ——\ / incident power. At B = 1 the error in the
/ dissipated power, as measured using the RF
10% / signals, is minimized and approximately the value
of the error in the incident power. As B gets much
above 8 and much below 0.15 the errors in
dissipated power, and subsequently calculated
01 1 10 Vvalues of Qg start to become excessive.

N,

5%

ERROR IN DISSIPATED POWER

0%
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Q, AND E, .. MEASUREEMENTS WITH BETA NEAR 1
DECAY MEASUREMENT

» Measure the forward and reflected power just prior to turning off the RF so that
one may calculate the reflection coefficient.

» Use the forward, reflected and field probe power just prior to turning off the RF
in order to calculate the dissipated (Pp;g,) power.

» Determine if the cavity is overcoupled or undercoupled by looking at the reflected
power pulse shape (cp = £1).

» Measure decay time of the emitted power so that one can calculate the loaded-Q

 Using this data calculate Q, for the cavity.

This equation becomes

l"‘ Cp\/ ref /wad 1+ P|:|:> n P,:p Q more complicated if there
L are more than 2 ports on
1 Cp\/ et/ Prua x Poi P

Disp Disp the cavity
r/Q
E c — \/QOPDisp (—L)

chcl—
QFP (r/Q)

Qo:
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Q, AND E,.. MEASUREMENTS WITH BETA NEAR 1
CW MEASUREMENT

» Using the field probe-Q calculated during the decay measurement one can
calculate the gradient.

e Using the difference between the forward power and the sum of the
reflected and transmitted power calculate the dissipated power.

» Use the Gradient and the dissipated power to calculate Q,

E :JQFPPFP(r/Q)
L

E°L
PDisp(r/Q)

Note: The errors in E and Q, ARE be higher in a CW measurement.

Qo:
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GRADIENT MEASUREMENTS WITH BETA NEAR 1

The typical gradient errors are on the order of 6% to 8% with the
same constraints. This assumes that:

* The errors in the power* measurements are less than 7.5%

e The error in tau is less than 3%o.

e The system has as a low VSWR

*Note that Power measurement errors include nonlinearity of
the power meters (typically 1% to 2%) as well as absolute
accuracy of the instruments (typically 3% to 5%) and the
calibration errors (typically an added 3% to 5%0).

Thus for a 40 MV/m accelerating gradient measurement the actual
value is probably between 37 and 43 MV/m.
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REFLECTED POWER WAVEFORMS

When operating cavities near critical coupling and preparing to make a decay
measurement, one of the items that must be determined is the cavity is over coupled
or under coupled. Typically a crystal detector is placed on the reflected power signal
and the waveform is observed under pulsed conditions.

Initial peak is equal to the
Signal goes to zero reflected power level when
if properly tuned cavity detuned in all cases

/ J&L
p>1 1>4>1/3

Over Coupled Critically Coupled Under Coupled
Reflected Power
Field Probe Forward Power
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CABLE BREAKDOWN IN LOW PRESSURE HELIUM

= When vertical testing the incident power cables must pass
through the low pressure helium gas in order to get to the
fundamental power coupler.

= Both the mating connector space as well as the cable back
shell space are susceptible to this phenomena.

= Glow discharges have been produced in un-terminated N-
connectors at 20 Torr using as little as 10 Watts.

= Even connectors in 2 K liquid helium have been known to
break down at power levels on the order of 150 W, full

reflected at the cavity.
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CABLE BREAKDOWN IN LOW PRESSURE HELIUM

™ e
=  Once a breakdown is initiated it will be sustained by the forward power
even at levels down to 10 W.

= Such events appear to be Q-switching within the cavity. The gradient
will be reduced and the measured Qo will be reduced substantially.

= These discharges destroy connectors and have the potential to cause
failures in vacuum feedthroughs.

= To put things in perspective
e The Paschen minimum is the product of the pressure and distance required
for the minimum voltage breakdown in gas.
e For helium this value is 4 Torr-cm.

* |In other words at 20 Torr the electrode spacing for a minimum voltage
breakdown is 2 mm.

= The theory on breakdown in liquid is that:

e A few watts of heat is produced in the connector, possibly through thermal
conduction down the, insulated, center conductor, from the antenna within
the cavity, or in the connector pin itself.

e The liquid helium flashes to gas within the connector
e A breakdown occurs in the newly produced low pressure gas volume.
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CABLE BREAKDOWN IN LOW PRESSURE HELIUM
™ _

= To determine if you have a cable discharge, while it is occurring:
e Detune the frequency of the LLRF system far enough to lose lock in the
cavity.
e Measure the forward and reflected power.

e Subtract the calibrated forward power from the calibrated reflected power
to calculate the lost power.

e If any significant power is being lost you probably have a glow discharge in
the connector.

= On occasion connectors damaged from mechanism this will exihibit this
anomalous loss permanently at all power levels.

= Therefore one should turn off the RF power; and repeat the steps above
to ensure that the lost power is consistent with the error associated with

the measurement.
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CABLE BREAKDOWN IN LOW PRESSURE HELIUM

So what is an engineer to do?

= NEVER make a high power RF connection in low pressure helium gas.

= We use silicon dioxide dielectric, stainless steel jacketed, cables manufactured by
Times Microwave which have the outer conductor welded into a Conflat flange.
This ensures that the high power connections are only made in liquid helium.

= Vent all connector volumes to the helium bath to improve the heat conduction
out of the space, especially connector backshells.

= Fill all potential spaces with insulating material. In theory this should work but
we have only had limited success at 300 W.

= One option that we have pursued but not fully implemented is to pressurize the
cable with helium gas including the connection to the vacuum feed through at
the coupler antenna.

= Best of all critically couple the cavities by carefully adjusting the input antenna or
by using a variable coupler so that you do not have to use more than 150 W at
the cavity.
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EXAMPLE OF PRESSURIZED CABLE SOLUTION

+30TO -30 /(
GAUGE
3PSIG f

Supply 1PSIG

' /
D—H—N—{N i ANDREWS CONNECTOR
/ TYPE H4PNM
ASSEMBLED AS PER MFG
}{4} }{4} COMPRESSION FITTING??
QUICK RELEASE FITTING

INSTRUCTIONS
TO 1/8" NTP FITTING
FOR HELIUM SUPPLY LINE

APPX 3 FEET OF 1/4 INCH NYLON TUBING
10 PSIG

—
L

ANDREWS 1/2 INCH
ﬁ\lGE AIR CORE HELIAX
CABLE
FOR ¢ 5PSIG
PUMPOUT

\ EPOXY CABLE INTO A

2 3/4 INCH CONFLAT FLANGE
HELIUM MANIFOLD AND WARM END DETAILS

REPLACE SEAL WITH GORTEX WASHER

DO NOT INSTALL O-RINGS OR RUBBER SEALS
DRILL A 0.0625 HOLE IN TEFLON DIELECTRIC —— —— ON COLD END OF CABLE.

““FILL SPACE BETWEEN OUTER CONDUCTOR OF CABLE
AND THE BACKSHELL WITH TORR SEAL EPOXY

FILL THREADS WITH TORR SEAL
EPOXY

COLD END CONNECTOR DETAILS
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EXAMPLE OF PRESSURIZED CABLE SOLUTION

0703 @ » Safety Pressure Relief
3 PSIG i? 4—/_

Supply 1PSIG . 10Psic
_P.,
(] > < T (L / ]
P L ANDREWS CONNECTOR
/ TYPE H4PNM
ASSEMBLED AS PER MFG
—D }{—D COMPRESSION FITTING?? INSTRUCTIONS

QUICK RELEASE FITTING TO 1/8"NTP FITTING
FOR HELIUM SUPPLY LINE

ANDREWS 1/2 INCH
AIR CORE HELIAX
CABLE

Eg;LANGE 4¢ £ PSIG
PUMPOUT
- . . \ EPOXY CABLE INTO A
o Pump and purge with clean helium prior to 2 3/4 INCH CONFLAT FLANGE
cooldown.
* Prevents frozen air in cable

* Prevents contamination within dewar if lower seals
leak during operation.
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EXAMPLE OF PRESSURIZED CABLE SOLUTION

APPX 3 FEET OF 1/4 INCH NYLON TUBING

+30TO -30 /(
GAUGE if

10 PSIG
Supply 1PSIG B /
_P.,
14 ]
HH><H e ) A ANDREWS CONNECTOR
T / TYPE H4PNM
}@ X ASSEMBLED AS PER MFG

COMPRESSION FITTING?? INSTRUCTIONS
QUICK RELEASE FITTING TO 1/8" NTP FITTING
FOR HELIUM|SUPPLY LINE ANDREWS 1/2 INCH
I-(F FLANGE - AIR CORE HELIAX
FOR ¢ 5PSIG
PUMPOUT

CABLE

| elief valve remains open

A
e Inlet valve remains open when dewar is cold and TANGE
when dewar is cold. during warmup.
* Maintains pressure in  Relieves pressure when RF heat
cable when helium gas in cable causes gas to warm up
gets cold or turns to liquid or liquid to turn to gas
 Relieves pressure during
warmup.

DISTRIBUTION STATE A

T. J. Powers[ | 2009 Energy Recovered Linac Workshop [ | Ithaca, NY .‘leffer%un Lab



CONFUSING DATA

1.E+11
Ry {F o= — | _||__T_—|__| N T T
Ill-l‘—'ql—l | | l J_ e T_FL -JT T|]'l- 1 |'__|_F___| T_-%L #L%ﬁ
“H' TT RJFTTA*L_T__T_i__Eét}E ZTETLTLJ LU
_iLHFILT'Lt =t (I L L T P
Breno | F AT et e e e
1.E+09
0 5 10 E (MV/m)15 20 25

» Data varied substantially depending on:
o Incident power used for incident power cable calibration
o Time at higher power levels
o Delay between reducing the power and making a measurement
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SiOz CABLE LOSS CHANGES*

= One NEW phenomena that was “discovered” last summer
was that the Si0, cable losses were not stable after the
application of even a moderate amount of RF power, i.e.
tens of Watts.

" This shows up as a change in the forward and reflected
power over time a constant RF power.

" |t introduces significant error into the measurements of
gradient and Q, of the cavities.

* When testing cavities changes in both Q, and E shortly after
turning the RF on at higher power levels may be an indicator
of the problem.

*NOTE: These are not Times Microwave cables, which have yet to be tested

DISTRIBUTION STATE A _'jeffer%nn Lab

T. J. Powers[ | 2009 Energy Recovered Linac Workshop [ | Ithaca, NY



INITIAL SYMPTOMS Q VS E DATA

* »
*e®
oe ? o o * * ¢
1get0 L= T e 1 [f2eedp ot W'__
\ Pid
P
J
/
o}
o 9.9E+09 N o
. \ »
- 9.7E+09 v yl
- 9.5E P\ / 3
. +09 (g \ 34 ..!
o / a =
g 9.3E+09 ~
\Jd m =
1E+09 i — 9.1E+09 v |
0 8.9E+09 = 20 25
8.7E+09 T E (MV/m)
183 185 18.7 189 191 193
. . ., E(MV/m) : :
» Data more consistent if incident power cable calibrated at multiple
power levels

» Data shown in inset graph taken by
» Calibrating the incident power cable at high power
o Turning off the RF for 3 minutes
« Turning the power back on at about 37 W
* Recording the data continuously for 2 minutes
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SiOz CABLE LOSS CHANGES

= |t can easily be observed by
e Detuning the cavity
e Turing the RF power off for several minutes

* Turning the RF Power on and observing the forward, reflected and
“lost” power over a 1 to 5 minute time frame.

= Some variation in the Incident and Reflected power is
expected as the amplifiers may have a transient in their gain
due to thermal issues.

= The “lost” power should remain constant as it is the
calibrated difference between the Incident and Reflected
Power.

= The amount of change in the “lost” power indicates the
magnitude of the introduced error.
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SiOz CABLE LOSS CHANGES

0.4 9.6 %
= 02 g 4.7%
Z \
_g 0N | 0%
L
c 0.2 ~45%
©
s -0.4 8.7 %
{'_U \
()
£ 06 — B B -12.9%
E - |
» -0.8 ~16.8%
1 -20.6%
0 10 20 30 40 50

RF Power (W)
Change in SiO2 Cable calibration as a function of forward Power

= Data taken with dewar at 2K

= Power applied and allowed to stabilize for a few minutes prior to taking the
calibration data.
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GRAPHS OF GOOD AND ANOMALOUS CABLE COOL DOWNS

300 0.0 300 . . 0.0
Expected Results Anomalous Results | — 1o Diode
250 -0.3 250 _ —— Middle Diode 0.3
Lower Diode
< - __ 200 -0.6
— "- EE'
g g o
= 7 2] 5 ]
= - - e - - © ) o
@ 150 09 o ® 150 -09 =
@ b o -
o w 2 v
= . o
100 | ——Top Diode 1.2 [ 100 19
—— Middle Diode
50 Lower Diode -1.5 50 ,~.‘~----—--‘ 15
- e 511 @ 1497 MHz
0 1.8 0 = -1.8
0 100 200 300 400 0 100 200 300 400
Time (minutes) Time (minutes)

» S11 of unterminated cable measured during “standard’ cool down process

» Thermometry was installed in a channel mounted on the wall of the dewar, thus the actual
temperature of the cable is only loosely correlated to the temperature readings.

o Swept S11 data was recorded periodically during the cool down process

2
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GRAPHS OF GOOD AND ANOMALOUS CABLE COOL DOWNS

300 0.0 300 . . 00
——Top Diod
Expected Results Anomalous Results op Diode
250 . —— Middle Diode 0.3
Lower Diode
200 | ==S11@1497MHz | ¢
g .
et
3 3
g -0.9 5‘:
£
K2
100 1.2
50 ﬂ"\\p ------ 4 -15
0 - -1.8
0 100 2L 300 400 0 100 200 300 400

Time (minutes) Time (minutes)

» S11 of unterminated cable measured during “standard’ cool down process

» Thermometry was installed in a channel mounted on the wall of the dewar, thus the actual
temperature of the cable is only loosely correlated to the temperature readings.

o Swept S11 data was recorded periodically during the cool down process
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DIRECTIONAL COUPLERS ARE NOT CREATED EQUAL

" Frequently directional couplers are used to
make measurements for which the load is not
matched at 50 Ohms

"= One example is the final step on the incident
and reflected power calibrations where the
reflected power is some 3 to 6 dB below the
forward power

= Another example is when measuring a cavity
that is not quite matched, i.e. 8 # 1.
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MEASUREMENT TECHNIQUES

=  Perform S21 measurements of different ports with all of the other ports
terminated at 50 Ohms or with a broad band miss-matched load.

= One critical item is that there is a significant error introduced due to S11
of the output port on the network analyzer. To remedy this one must
insert a circulator between port 1 and the unit under test.

= A good broad band miss match is an unterminated attenuator.

Network 2 F/W@

Analyzer B B
In(@
LOAD OR
ATTENUATOR
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NARDA 20 dB COUPLER

0%

Error in Reflected Power Measurement |

- i ot A

-10% W A WW
| ‘ MM

| ha ey | ' L

-15%
MWAMANAMA . (e A

Open (calibration) Ma
20% 1 —edB

(Beta*=1. 7) \\
3dB (Beta*=3.3) A"W\,\
"25% 7 —2dB(Beta*-4 9) M
0% 1dB (Beta =11. 2) d\w\"‘v\\,\,,\m
1.400 1.425 1.450 1.475 1.500 1.525 1.550 1.575 1.600
Frequency (GHz)

Error in Reflected Power Measurement (%)

= 1>% Open (Calibration) —6 dB (Beta*=1.7) .
E jou | 3dB (Beta*=3.3) —2 dB (Beta*=4.9) Error in power
g 1d8 (Beta*=112) measurement with
: o 71“”"7@4% e different loads on the
VW N 2 e PALA VAT LA A - -
= o B A A L DANIN At PSRRIV output of the directional
I coupler (i.e. different
E beta*) Narda 3320 Serial
g 0% 73091
=) Error in Forward Power Measurement
B -15% T T T T
& 1.400 1.425 1.450 1.475 1.500 1.525 1.550 1.575 1.600
Frequency (GHz)
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CT MICROWAVE 30 dB COUPLER

_ 15.0% : : : : —

& Error in Reflected Power Measurement Open (Calibration)

= . ——6dB (Beta*=1. 7)

g 100% 3 dB (Beta*=3.3)

Q

5 ——2 dB (Beta*=4.9)

g 20% 1dB (Beta*=11.2)

s |

z 0% e | L —

:E e r—— e [ L e | ‘ 1

© ! ! ~ N

L 5.0%

(%)

2

T

= -10.0%

S

w -15.0%

1.400 1.425 1.450 1.475 1.500 1.525 1.550 1.575 1.600
Frequency (GHz)
15%
Open (Calibration) ——6dB (Beta*=1.7)
10% 3dB (Beta*=3.3) ——2dB (Beta*=4.9) Error in power
1dB (Beta*=11.2) ) ]
| | ~ measurement with different
5% | | |
| | | | loads on the output of the

O% MMW T ___,-—"'“/

— e — ———_ | directional coupler (i.e.

o 17// different beta*) CT

Microwave 441433, serial

Error in Forward Power Measurement (%)

o 73001
Error in Forward Power Measurement
-15% | | | |
1.400 1.425 1.450 1.475 1.500 1.525 1.550 1.575 1.600

Frequency (GHz)
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MEASUREMENT CONCLUSIONS

Quality measurements necessary to qualify superconducting cavities
require quality equipment designs, careful measurement techniques
and well characterized calibrations processes.

Errors for the standard measurements are calculable. However, the
are a function of the measurement equipment, the quality of the
calibration and the specific conditions of each data point. As such
they should be included in the measurement system not as an
afterthought.

In addition to the slides presented, | have included a handout of the
equations for both the cavity measurements and the associated
errors.

| want to thank all of the folks in the SRF Institute at Jefferson Lab for
their constant patience in helping me put this presentation together.

DISTRIBUTION STATE A _'jeffer%nn Lab

T. J. Powers[ | 2009 Energy Recovered Linac Workshop [ | Ithaca, NY



PRACTICAL ASPECTS OF OPERATION

" |Interlocks

= Optimizing Loaded-Q
" Pulsed response as a function of loaded-Q
= Multiple cavities driven by a single source
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CRYOMODULE INTERLOCKS

= NEVER OPERATE A CRYOMODULE WITH THE
COUPLER INTERLOCKS BYPASSED

= Coupler Interlocks = RF Driven Interlocks
* Arc detector(s) * Quench detection
* Coupler vacuum e E%/P, ratio
* Window temperature e Gradient Present with RF off

e Water flow (If water cooled)
e Electron probe (Useful but not required)
e Water temperature (Useful but not required)

= Cryomodule

e Cavity vacuum

* Helium level

e Helium pressure (Useful but not required depending on cryo plant)
e Insulating vacuum (Useful but not required)
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OPTIMIZING LOADED-Q

o __(B+1L
' 4BQ (r/Q)

0

{(E +1,Q, (F/Q)COSWB)Z +£2QL6:_E +1,Q, (r/Q)sian) }

Assuming that g >>1this reduces to

IDKIy - L
4Q_ (r/Q)

0

{(E +1,Q, (F/Q)COSV/B)2 +(2QL6:_E +1,Q, (r/Q)sim//BJ }

 Where

= of isthe frequency shift of the cavity from the generator frequency
=y IS the phase of the resultant* beam relative to cavity gradient and

= f=(Q-Q)/Q.

* You need to take the derivative of this equation with respect to Q,
In order to calculate the minimum Kklystron power necessary.

* Note: For an multiple beams at once, i.e. an energy recovered linac (ERL), the
resultant beam current is the vector sum of the beams
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MODERATE AMOUNT OF MATH

PKI = .
*4Q,(r/Q)

0

{(E +10Q (r/Q)cosyrg ) +(2QL6:— E+1,Q. (r/Q)sin WBJ }

2
Let A:(Zé:—E+ l, (r/Q)sim,yB] and B =1,(r/Q)cosy,

0

I:)Kly - L
4Q_ (r/Q)
For minimum P, asa function of Q :
Poy _o__ L d (1
dQ, 4(r/Q) dQ. \ Q.
_ (‘; {(E+QBY+ QfA}+Qi{25(E +Q,B)+2Q, A}

L

(E+Q.BY +Q’A|

{(E+qQ.BY +QfA}j

0

E2
B2+ A
E E

"B+ A S Y
(1,(r/Q)cosy, ) +[2fE +1, (r/Q)smij

0

0=Q(B*+A)-E*=Q_ -

QL‘MinPower
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REDUCED SOLUTION FOR SRF CAVITIES OPERATED ON CREST

E

\/{(lo(r/Q)COSl//B)Z +(26:E +1, (r/Q)sim//Bj }

0

QI—‘MinPower o

A typical linac operated on crest, with no microphonics

E
QI—‘MinPower = IO(I’/Q)

~Y

For an perfect energy recoverd linac with microphonics

"~y

f
QI-‘l\/linPower = 2‘501:‘

But life is never perfect
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THE EFFECTS OF TUNING ON OFF CREST CW BEAM LOADING

e On beam turn on the forward power increases the phase shifts and
microphonics effects are multiplied

 The tuner operates with a goal of making yy,, equal to zero by shifting the
frequency by &fg which compensates for the |,R-Sinyg term.

* Thus gy, — 0 and Py, is minimized to: 0

e

2
of :
E—I—loRC COSWB)Z-I—(ZQLé:::ME-I-ZQLfSE ORC SanBj
0 0

/

(5 +1)L (
40 R

I:)Kly =

« Where 0&f,, is the frequency shifts due to microphonics

e Thus in this case:
E

\/(Io(r/Q)cost)z +(25:M Ej

QI-‘MinPower o
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THEORETICAL EXAMPLE OF TUNERS COMPENSATING FOR OFF CREST BEAM LOADING

< BEAM ON —*

UL Y

—waer
—Phase

/

V\]\A TUNER RUNNING

AN

V

|

M AAAAAAAAAA
VAAAAAAAANY

0.0 0.2 0.4 0.6 0.8
Time (Sec)

N

RF Power (kW)
w
|

AAARAAAANRANA.
VAN

CEBAF 7-Cell Cavity
L=0.7m
(r/Q) =960
E=8MV/m
Q =2x10’
of =10 Hz
I, =10 mA

Pass one yg = -10° _

Pass two yg = 166°
Resultant Beam
0.7 mAat 78°

60

40

20

o
RF Phase (Deq)
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THEORETICAL EXAMPLE OF TUNERS COMPENSATING FOR OFF CREST BEAM LOADING

< BEAM ON —*

5 \ —~——— 60
/ —Power
— —Phase -
5 \ )

AN
o

TUNER RUNNING \
S 4 20 P
% N T
3 . O
% 3 0 %
of o
Iﬁ:L 2 -20 E:L

=
1

LN

o

; \ A

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (Sec)

|
1

(@)

o
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PREDICTED AND MEASURED FORWARD POWER IN AN ERL

1.0
0.9
0.8

07

206

% 0.5

204

& 0.3
0.2
0.1
0.0

/

. Tuners ON‘
Il ¢ Tuners OFF

/

/
A1
i b

0.0 05 1.0 15 20 25 3.0 35 4.0 45
Beam Current (mA)

The solid lines indicate
the predicted values
based on:

e Q, =2x107

e« E=5.6 MV/m.

e Af=10Hz

Test Process:
* Tune the cavity with no
current.

» Disable the mechanical
tuners.

 Ramp the current up and
record the forward power
and phase.

* Repeat with Tuners
enabled.
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Predicted and Measured RF Drive Phase In an ERL

50 "¢ Tuners ON
20 + Tuners OFF - ,g //
i R gy
2 30 S B _—
% /’ . /
c 20 / e
< ! * /
Q : : N
7))
< 10 o -
o - “ o 3
20 }‘/{ F LR
D L ¢
L 10 .// ; ¢
e
-20 -

00 05 10 15 20 25 30 35 40 45
Beam Current (mA)
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EFFECTS OF MICROPHONICS AND IMPERFECT ENERGY RECOVERY

IN AN ERL CAVITY E =20 MV/m, I, = 100 mA
>

1,000 -

100

Pklystron (kW)
—
o
|

"o g P

0 !
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5
Loaded Q (x108)

—=—No Microphonics and Perfect Energy Recovery

——With Microphonics and Perfect Energy Recovery
—+—\With Microphonics and Second Pass 1d Off From Perfect Energy Recovery After Tuning

—=—With Microphonics and Second Pass 1d Off From Perfect Energy Recovery
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SELECTING LOADED-Q FOR OFF CREST BEAM

= Selection of loaded-Q has implications on RF power
requirements.

= When the beam is operated on crest the process is straight
forward and margins only have to be added for
e Microphonics,
* Uncertainties in cavity parameters such as Q, and operating gradient.
e Overall Margin
e Detuning effects.

= When the beam is not operated on crest operational modes
must be considered. Often this can substantially reduce the
RF power requirements.

* Ramping current simultaneous with operating tuners.
e Allowed levels of pulsed operation
e Uncertainty of the relative beam phases in an ERL
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“SIMPLE” BLOCK DIAGRAM OF CONTROL SYSTEM

BIAS PHASE OFFSET
¥ KLYSTRON
PHASE PHASE AMPLITUDE | T ——

PHASE MODULATOR ‘ MODULATOR | | MODULATOR ® L/ J L
70 MHz MODULATOR i / %
A GRADIENT -, 1 |
l prase OV oo L

PHASE LOOP FILTER pc: [ s
SETPOINT FILTER GRADIENT — N
‘ OFFSET—{2)) ./

PMES < | PHASE PHASE R4 DRIVE T jor O =4
DETECTOR DETECTOR | | £/ pon / %
| . ' LOOP GAIN \ /'
E GRADIENT _+ < 7N
— =] SETPOINT . S }

PHASE ™ |DETECTOR| | 70 MHz \ >
| O
- A ./

N T 1 FIELD PROBE POWER : S -

all 1427 MHz |
FORWARD POWER
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CONTROL SYSTEM OVERVIEW

System down converts to 70 MHz
Phase and amplitude control are done at 70 MHz.

Software control of loop gains allows for on the fly changes
during operations.

Analog monitor ports, coupled with the FEL’s analog
monitoring system allows us to monitor the health of the
control loops during CW and pulsed operations

Bias control on phase shifter allows increased range at the
price of loop gain.

The design has 20 years of history and successful use at
CEBAF.
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CONTROL SYSTEM “"FEATURES”

System designed in the early 90s for a CW machine.
Proportional control, no integral term, no derivative term.

No flexibility in control loop to increase the speed when
driving the low bandwidth fundamental power couplers

Nominal phase loop control range +/-45°
6/7 or 4/5 Pi mode filter hard wired on analog board.

Designed for CW operations, which meant problems during
high current pulsed operations.
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TYPICAL CONTROL TRANSIENTS LOADED Q = 1x10°

1 Measured gradient
2 Measured phase

3 Gradient drive

4 Phase drive

Phase = 90°

Chl+10.0mv™hy M 400us A ExXt £ B2.0mV

3Jun 2009
19.70 % 15:03:01

 “Normal” beam loading in the buncher cavity where the beam
IS at the zero crossing.

* Note the fast rise time of the signals and the short transients on
the measured phase signal
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TYPICAL CONTROL TRANSIENTS LOADED Q = 2x10°

1 Measured gradient
2 Measured phase

3 Gradient drive

B s e R A T 4 Phase drive

Phase = 90°

Chl+10.0mv™hy M 400us A ExXt £ B2.0mV

3Jun 2009
19.70 % 15:02:07

* “Normal” beam loading in the injector where the beam is near

crest.
* Note the rise time of the signals and the fact that Gradient drive

signal has a moderate transient.
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TYPICAL CONTROL TRANSIENTS LOADED Q = 2x10’

1 Measured gradient
2 Measured phase

3 Gradient drive

4 Phase drive

Phase = 90°

Chl+10.0mv™hy M 400us A ExXt £ B2.0mV

3 Jun 2009
19.70 % 14:55:14
w19V B 13.U3. U1

« Beam loading on a high Loaded-Q cavity.

* Note the rise time of the signals and the fact that Phase drive
signal has a fairly large transient.
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TYPICAL CONTROL TRANSIENTS LOADED Q = 1x10°

1 Measured gradient
2 Measured phase
3 Gradient drive

Ch1 Freq

Efft;‘:. 4 Phase drive
lgeanm = 600 UA
Phase = 90°

M2.00ms A Ext £ S.00mw
27 Mar 2006

i 9.800% 12:14:32

* Note the measured phase has a large transient.

* Note that the phase drive signal is saturated
« This was “fixed” by adjusting the phase modulator bias signal

thus providing more range.

Ch1l 10.0mv",
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Pass Band Mode Filters

Multicell cavities support a number of frequencies that are close
to the fundamental frequency of the pi-mode.

For the JLAB 5-cell cavity the closest mode is about 4 Mhz lower
than the fundamental frequency.

For the JLAB 7-cell cavity the closest mode is between 2 and 2.7
MHz lower than the fundamental.

If the control system is not designed correctly this mode can be
excited and an energy modulation is introduced on the beam.

Although special filters were added to the low level RF system
they were not always adequate to suppress these modes.

Typically the 8/9 Pi mode on ILC cavities is 800 kHz below the Pi
mode. Thus, it presents even more of a concern.
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TYPICAL CONTROL TRANSIENTS LOADED Q = 1x10°

1 Measured gradient
2 Measured phase

3 Gradient drive

4 Phase drive

lgeanm = 600 UA
Phase = 90°

« Beam loading on a high Loaded-Q cavity.
* In addition to poor phase regulation the 6/7-Pi mode is causing

an oscillation in the system, which was remedied by lowering
the broad band gain in the phase loop.
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MULTIPLE CAVITIES ON SINGLE SOURCE

It can be a desirable to use a single source to drive
multiple cavities.

* Reduced cost per Watt at higher RF —Power levels.

 Availability of klystrons or 10Ts at desired levels for
multiple cavities.

« Unavailability of klystrons, IOTs at desired power
levels for single cavities.

* Reduced number of LLRF systems to drive cavities.
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MULTIPLE CAVITIES ON SINGLE SOURCE

|t can work fine when:
» The cavities are operated near crest.
* The beam is not sensitive to minor variations in gradient and phase.
* Loaded-Qs are well matched.
» Gradients are close to the same for all cavities.
* The loaded-Qs are relatively low as compared to pressure sensitivity
and microphonics.

* You have the advantage of a large number of cavities and individual
errors are corrected by statistics.
[t can present problems when:
* The beam is sensitive to errors in gradients or phase.
» Detuning becomes significant as compared to the FPC bandwidths.
o Cavities are operated at different gradients.
o Cauvities have different loaded-Qs
» Cavities are operated at different beam phases with respect to crest.
* While linacs are an area where this concept can be very practical,
Injectors are an area where the problems become important
especially when space charge and cavity induced beam focusing are
Important.
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SIMULATION METHOD

Use the basic complex RF voltage to complex gradient equation to
calculate the field in each cavity, including beam phase and cavity
detune angle.

Sum the real and imaginary parts of the electric field.

Compare the vector sum to the desired vector sum and calculate
the error in the vector sum.

Add, with gain, the complex error to the complex RF voltage from
the current pass.

Use this sum to calculate gradient in each cavity.

Repeat until the real and imaginary parts of the vector sum error
are below a threshold.

E: 1 4IBQL (r/Q)\73 QL (F/Q)
(1+iTany)\ Z,(6+1)L (1+iTan w)

Where w is the cavity detune angle.
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ERROR IN GRADIENT AND PHASE WHEN 1 OF 3 CAVITIES IS DETUNED
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PHASE ERROR IN WHEN THE PHASE IN 1 OF 3 CAVITIES IS DIFFERENT
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GRADIENT ERROR IN WHEN THE PHASE IN 1 OF 3 CAVITIES IS DIFFERENT
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Gradient Error in When the Loaded-Q of 1 of 3 Cavities is Higher Than the Others
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CONCLUSIONS

Thank you for your attention. | hope what | have
presented will be useful.
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