
Baryogenesis and Phenomenological Properties of 
Models with an extended Weak Gauge Symmetry

C.E.M. Wagner

EFI & KICP , Univ. of Chicago
HEP Division, Argonne National Lab.

Workshop on Baryon and Lepton Number Violation, Madison, September 22, 2009



Baryon Asymmetry Preservation

If Baryon number generated at the electroweak phase

transition,

Baryon number erased unless the baryon number violating

processes are out of equilibrium in the broken phase.
Therefore, to preserve the baryon asymmetry, a strongly first order

phase transition is necessary:

Kuzmin, Rubakov and Shaposhnikov, ’85—’87



Finite Temperature Higgs Potential

 D receives contributions at one-loop proportional to the
sum of the couplings of all bosons and fermions squared, and is
responsible for the phenomenon of symmetry restoration

E receives contributions proportional to the sum of the cube
of all light boson particle couplings 

Since in the SM the only bosons are  the gauge bosons, and the 
quartic coupling is proportional to the square of the Higgs mass,

Electroweak Baryogenesis in the SM is ruled out



Preservation of the Baryon Asymmetry
 EW Baryogenesis requires new boson degrees of freedom with 

strong couplings to the Higgs.

 Supersymmetry provides a natural framework for
    this scenario.            Huet, Nelson ’91; Giudice ’91, Espinosa, Quiros,Zwirner ’93.

 Relevant SUSY particle: Superpartner of the top

 Each stop has six degrees of freedom (3 of color, two of charge)  
and coupling of order one to the Higgs

 Since 

 Higgs masses up to 120 GeV may be accomodated

M. Carena, M. Quiros, C.W. ’96, ‘98



Alternative Channel at the LHC
When the stops and neutralino mass difference is small, the jets 
will be soft. 

One can look for the production of stops in association with jets 
or photons. Signature: Jets plus missing energy

5100 120 140 160 180 200 220
m(stop)

0

50

100

150

200

m
(
n
e
u
)

     -1
30 fb

      -1
100 fb

      -1
300 fb

       -1
D0 1 fb

    -1
2 fb

    -1
8 fb

Figure 2: Projected reach in jet+E/ T channel.

was done in the photon case, we shall not include a K-factor for the signal. Using the above
defined cuts, Fig. 2 shows the projected 5σ discovery reach with the statistical significance
estimated by S/

√
B, and where systematic erros have been included.

In order to estimate the systematic errors, we have used the following two strategies, (a) and
(b):

(a) Determine background directly from data [13]. This works for jZ with Z → νν̄, which
contributes about 75% of the SM background after cuts, and can be inferred from jZ with
Z → l+l−, l = e, µ. The Z → l+l− calibration channel is about seven times smaller than the
Z → νν̄ background in the signal region (pT,ll > 1 TeV), thus leading to the error estimate
δsysB =

√
7B.

(b) Determine individual systematic error sources:

• E/ T: 5% error on E/ T: 36% effect on background, as determined by simulating jZ
with Z → νν̄.

• PDFs from reference SM processes, e.g. γ + Z with Z → l+l−: 3% (stat. error for
pT > 500 GeV).

• Lepton veto: negligible error, since this cut plays a role mainly for the jW back-
ground with W → eν or W → µν, which contributes only about 5% to the total SM
background.

Total: 36%.

The results presented in Fig. 2 make use of method (a). Searches in the jet plus E/ T
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Jets plus missing Energy

54

mt̃1/GeV = 110 130 150 170 190 210 230
∆m/GeV = 10 1920 1716 1585 1360 1056 1015 845

20 1170 1085 948 877 717 676 570
30 762 746 676 679 548 551 433
40 559 516 514 507 442 444 348
50 437 449 422 428 364 343 279

Table 2: Number of signal events in the jet+E/ T channel for 100 fb−1 and for various
combinations of mt̃1 and ∆m = mt̃1 −mχ̃0

1
. The event numbers in the table have an intrinsic

statistical uncertainty of a few tens from the Monte Carlo error.

calibrated from jZ with Z → l+l− [28], and for similar reasons as in the photon case, the
SUSY background has been assumed to be small.

In order to proceed with this analysis, we have used the same cuts as in Ref. [28]:

1. Require one hard jet with pT > 100 GeV and |η| < 3.2 for the trigger.

2. Large missing energy E/ T > 1000 GeV.

3. Veto against electrons with pT > 5 GeV and muons with pT > 6 GeV in the visible
region (|η| < 2.5).

4. Require the second-hardest jet to go in the opposite hemisphere as the missing mo-
mentum (i.e. the first and second jet should go in roughly the same direction):
∆φ(pT,j2, #pγ) > 0.5. This cut reduces background from W → τν where the tau decay
products are emitted mostly in the opposite direction as the hard initial-state jet.

Application of these cuts leads to a SM Background of about 7 fb, corresponding to 700
events for 100 fb−1 [28].

The NLO corrections to t̃1t̃∗1 + j are not available in the literature. However, experience
from tt̄j [30] suggests that the K-factor should be close to one. Therefore, contrary to what
was done in the photon case, we shall not include a K-factor for the signal.

Using the above defined cuts, the expected number of signal events is listed in Tab. 2 for
various stop and neutralino mass values. Fig. 3 shows the projected 5σ discovery reach with
the statistical significance estimated by S/

√
B and including systematic errors. In order to

estimate the systematic errors, we have explored the following two strategies, (a) and (b):

(a) The first strategy determines the dominant SM backgrounds directly from data [28]. In
particular, the jZ background with Z → νν̄, which contributes about 75% of the SM
background after cuts, can be inferred from jZ with Z → l+l−, l = e, µ. The Z → l+l−

calibration channel is about seven times smaller than the Z → νν̄ background in the
signal region (pT,ll > 1 TeV), thus leading to the error estimate δsysB =

√
7B.

(b) Alternatively, similar to the previous section, individual systematic error sources can
be identified:
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Including systematics associated 
with jet and missing energy 
determination. Dominant missing 
energy background, coming from 
Z’s, calibrated with the electron 
channel.

Excellent reach until masses of the 
order of 220 GeV and larger.

Full region consistent with EWBG
will be probed by combining the 
LHC with the Tevatron searches.

M. Carena, A. Freitas, C.W.’08
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Figure 3: Projected LHC 5σ discovery reach in the jet+E/ T channel. For comparison the
current and future Tevatron 95% C. L. exclusion bounds for light stops are also shown.

• A 5% error on E/ T induces a 36% uncertainty on the background, as determined
by simulating jZ with Z → νν̄.

• The PDFs can be extracted from reference SM processes, e.g. jZ with Z → l+l−.
Thus the uncertainty is mainly limited by the statistical error for the standard
candle process. For the region of high transverse momenta (pT > 500 GeV), which
is relevant for the present analysis, this leads to relatively small error of 3%.

• Systematic uncertainties associated with the lepton veto are negligible, since this
cut plays a role mainly for the jW background with W → eν or W → µν, which
contributes only about 5% to the total SM background.

In summary, this strategy yields a total estimated systematic error of about 36%,
strongly dominated by the uncertainty of the missing E/ T measurement.

It is evident that the data-driven method (a) for determining the systematic error of the SM
backgrounds leads to better results. This is different from the photon case in section 3, in
which method (b) proves to be convenient. The improvement in the results associated with
method (a) in the jet case is due to the larger statistics, while on the other hand a much
larger background uncertainty is induced for method (b) by the error in the missing energy
determination.

The results presented in Fig. 3 make use of method (a). Searches in the jet plus E/ T

channel turn out to be more promising than in the photon plus E/ T channel. They allow
to test the co-annihilation region up to relatively large values of the stop mass, of about
200 GeV or larger. Moreover, when complemented with Tevatron search analyses, they
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Baryogenesis demands stops and 
Higgs bosons with masses smaller 
than 125 GeV

Carena, Nardini, Quiros, C.W. ‘08

TextLight Higgs may be probed at the 
Tevatron.      
P. Draper, T. Liu, C.W. ‘09



Baryogenesis in Gauge Extensions of 
the MSSM



An SU(2) Gauge Extension

• One solution to this problem is to 
increase the Higgs mass by having it 
participate in new strong gauge 
interactions.

• Consistent with data, mH may increase 
as high as 350 GeV – radically affecting 
MSSM Higgs phenomenology.

• We invoke a new SU(2) interaction 
under which the Higgses and third family 
are charged.

SU(2)1 x SU(2)2 x U(1)Y
• This model has been called “Topflavor”: 

a separate weak interaction for the 3rd

family.
• Because SU(2)1 is asymptotically free, it 

has no problems with strong coupling at 
high energies.

• The extra W’s are a hallmark of the 
model, and can be observed in single 
top at the LHC.

300 fb−1
100 fb−1
30 fb−1
10 fb−1

perturb. limit

top-flavor see-saw

0.05

orbifolded L-R

perturbative limit

top-flavor

MW ′ (TeV)

g′
/g

S
M

10987654321

10

1

0.1

P Batra, A. Delgado, D.E. Kaplan, T Tait, JHEP 0402,043 (2004) 

Z. Sullivan, hep-ph/0306266

Solution to the SUSY Hierarchy Problem



How does this work in practice ?

If  SUSY breaking scale is smaller than gauge symmetry breaking scale, decoupling 
occurs. Low energy D-terms are just the standard ones.

Therefore, supersymmetry breaking terms larger than the vev that breaks the  gauge 
symmetry should be present. Calling                         to this vev

respect to the MSSM. It is the aim of this article to discuss these properties as well as the associated
supersymmetry breaking mechanism that may be consistent with such a spectrum.

The article is organized as follows. In section 2 we review the model. In section 3 we describe
the Higgs and sparticle spectrum and discuss the contributions to the T -parameter. In section 4
we describe a possible realization of supersymmetry breaking that leads to a spectrum of third
generation left-handed sparticles much lighter than the first and second generation ones and discuss
the collider physics associated with this model. In section 5 we comment on the possible cosmological
constraints. In section 6 we describe a different possibility, in which the non-standard Higgs bosons
become light, while the left-handed squarks and sleptons remain heavy. We reserve section 7 for
our conclusions.

2 Review of the Model

A simple way to implement the possibility of an enhanced electroweak D-term is through the
enlarged weak gauge group SU(2)1×SU(2)2. The two MSSM Higgs bosons and the third generation
left-handed doublet super-fields are charged under SU(2)1 but singlets under SU(2)2, while the
lighter generations left-handed doublets are singlets under SU(2)1 but charged under SU(2)2. A
bidoublet, Σ, is introduced which acquires a vev, < Σ >= uI, breaking the product group to the
diagonal one, SU(2)W , which is identified with the SM weak group. The effective weak gauge
coupling is therefore given by

g =
g1g2

√

g2
1 + g2

2

, (1)

where g1 and g2 are the SU(2)1 and SU(2)2 gauge couplings, respectively. For values of g1 " g2

the weak coupling is approximately equal to g2. Following Ref [5], the breakdown of the enhanced
gauge symmetry is governed by the Σ superpotential

W = λ1S

(

ΣΣ

2
− w2

)

, (2)

where S is a gauge singlet. This leads to a Σ potential of the form

V = m2
ΣΣ†Σ +

λ2
1

4
|ΣΣ|2 −

B

2
(ΣΣ + h.c.) + ... (3)

where B = λ1w2, m2
Σ is a soft supersymmetry breaking mass term and, for simplicity, we have

considered all parameters to be real. There is also a contribution coming from the D-terms of the
SU(2)1 and SU(2)2 gauge groups to the potential,

∆V =
g2
1

8

(

Tr[Σ†τ aΣ] + H†
uτ

aHu + H†
dτ

aHd + L†τ aL + Q†τ aQ
)2

+
g2
2

8

(

Tr[Σ†τ aΣ] + ...
)2

(4)

where τa are the generators of SU(2) and, for completeness, we have added the extra third generation
lepton and quark scalars, which were omitted in the analysis of Ref. [5].
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For values of B > m2
Σ, the Σ field acquires a vev along the D-flat direction, < Σ >= uI, with

u2 = (B−m2
Σ)/λ2

1. Assuming that B " v2, with v the vev of the SM Higgs boson, one can integrate
out the heavy degrees of freedom and find the result for the enhanced SU(2)W D-terms

∆V =
g2

2
∆

∑

a

(

H†
uτ

aHu + H†
dτ

aHd + L†
3τ

aL3 + Q†
3τ

aQ3

)2

(5)

and

∆ =
1 +

2m2
Σ

g2
2u2

1 +
2m2

Σ

(g2
2+g2

1)u2

. (6)

Therefore, ignoring mixing with the non-standard CP-even Higgs boson, the SM-like Higgs mass is
enhanced to a value

m2
h =

1

2

(

g2∆ + g2
Y

)

v2 cos2 2β + λ2
2v

2 sin2 2β + loop corrections (7)

which is the main result of Ref. [5]. For completeness, we added the possible contribution of a
superpotential term

Wλ = λ2S
′HuHd (8)

with S ′ a singlet superfield. In our analysis we shall assume that the D-terms give the dominant con-
tribution to the tree-level Higgs mass. The term λ2, however, may have important phenomenological
implications as have been observed in several works, including Refs. [6, 11]. In our phenomenological
analysis, we will consider the simple case in which λ2 = 0.

Assuming that the value of u is of the order of a few TeV, as required to minimize the non-oblique
corrections to precision electroweak observables, the authors of Ref. [5] showed that the presence of
the enhanced D-terms can naturally raise the Higgs mass up to values of about 250 GeV, and for
large values of the g1 coupling at the symmetry breaking scale, α1 # 1, values as large as 300 GeV
may be obtained. Observe, however, that the large values of g1 necessary to push the Higgs mass
above 250 GeV may induce large radiative corrections to the tree-level values presented in this
section, making the current analysis less reliable

3 Mass Splittings and Phenomenological Implications

An important aspect of this model that was omitted from Ref. [5] is that the presence of the D-terms
will also induce additional splitting in the Higgs, squark and slepton masses. In order to understand
this point, one can write the low energy SU(2) D-term contributions to the effective potential in
the following way

VD =
g2∆

8

(

∑

i

Φ†
iΦi

)2

−
g2∆

4

∑

ij

∣

∣ΦT
i iσ2Φj

∣

∣

2
, (9)
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Integrating out the sigma field, we obtain a modification of the low energy D-term

D

As mentioned before, if the supersymmetry
breaking scale is small, ∆→ 1.
Observe that for g2

1 " g2
2 and large

values of mΣ, ∆" 1.



Tree-level Higgs Mass modification and Sparticle Spectrum

The low energy D-terms control the tree-level Higgs mass

m2
h =

1
2

(
g2∆ + g2

Y

)
v2 cos2 2β + loop corrections

So, large values of the Higgs mass may be obtained.  

Same D-terms, however, modify the rest of the third generation spectrum:

where Φi = L3, Q3, Hi are the SU(2) doublets with non-trivial transformations under SU(2)1

and σ2 is the antisymmetric Pauli matrix. To obtain the spectrum one should concentrate on
interactions of the different particles with the Higgs fields. The first term in Eq. (9) leads to a
positive contribution, g2∆v2/4 to the mass of the third generation squarks and sleptons, where
v2 = v2

u + v2
d, and vu,d are the Hu,d vevs. The second term in VD is the sum of the squares of the

SU(2) invariant combinations that couple to the corresponding quark and lepton SU(2) singlets in
the superpotential Yukawa terms. Therefore, it leads to negative contributions, −g2∆v2

i /2, to the
squark and slepton doublet component that couples via the Yukawa interaction with the Higgs Hi,
with i = u, d.

The sparticles also receives F -term contributions associated with the superpotential

W = µHuHd + huHuQU + hdHdQD + hlHdLE. (10)

In particular, the third generation squarks receive supersymmetric contributions proportional to
their super-partner masses, which become particularly important in the case of the top squarks.
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As well as the non-standard Higgs mass splittings
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where m2
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Hd
+ |µ|2 and m2
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Hu

+ |µ|2, where m2
Hd

and m2
Hu

are the soft supersymmetry
breaking square mass parameters. The resultant mass splitting is given by

m2
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g2∆

2
v2. (16)

3.1 Contributions to the T -Parameter

The additional splitting described in the previous section between the masses of the Higgs bosons,
sleptons and squarks can have important phenomenological implications. For instance, contrary
to naive expectations, for large values of the D-term contribution to the Higgs mass, the left-
handed sbottom becomes heavier than the left-handed stops. The exact stop and sbottom spectrum
depends, however, on the mixing with the right-handed third generation squarks. In this section,
to simplify the discussion, we will assume those mixings to be small, something that is natural for
non-degenerate squarks, moderate values of At and non-extreme values of tanβ.

The splitting between the upper and lower components of the left-handed doublets control their
contribution to the T parameter. For an SU(2) doublet, with up and down mass eigenvalues mu

and md, the contribution to the T -parameter is given by

∆T =
Nc

16πs2
Wm2
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[

m2
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2m2

um
2
d

m2
u − m2

d

log
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m2
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m2
d

)]

, (17)

where sW is the sine of the standard weak mixing angle s2
W " 0.2315.

If the ratio of the heavier doublet mass eigenstate to the lighter one is smaller than about 3, the
contribution to the T parameter may be approximated by [12]

∆T =
Nc

12πs2
Wm2

W

(∆mud)
2

=
Nc

12πs2
Wm2

W

(∆m2
ud)

2

(mu + md)2
, (18)

where Nc is the number of colors, ∆mud and ∆m2
ud are the differences between the masses and the

squared masses of the heavier and lighter components of the doublet. These contributions should
be added to the ones associated with the heavy SM-like Higgs boson,

∆T = −
3

8πc2
W

ln
mh

mhref

∆S =
1

6π
ln

mh

mhref

, (19)

where mhref
is a Higgs mass reference value. As mentioned above, the up and down sfermion mass

eigenstates are admixtures of SU(2) doublet and singlet components. In the case of non-negligible
mixing, the expression for ∆T , given by Eq. (18), needs to be reformulated. This turns out to be
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Large values of            can induce large values of the Higgs mass, up to 250 
GeV, but also produce large modifications of the spectrum.

∆
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Modified spectrum and precision measurements

Large values of the Higgs mass tend to induce large corrections to the T and S 
parameters

It is known, however, that if an extra positive contribution to the T parameter is 
present, agreement may be restored. The split sparticle spectrum provides such 
a contribution in a natural way.  Calling               the mass differrence between 
the upper and lower doublet component, each doublet contributes by
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Figure 3: Range of preferred values of the tau-sneutrino mass [GeV] as a function of the Higgs
mass [GeV]. Sneutrinos below the black line have masses less than mh/2 and therefore are potential
candidates for Higgs decays.

4 Phenomenological Properties

4.1 Higgs Boson Searches

One of the most important differences of this model with the standard implementation of the
MSSM is the Higgs mass range, which has an important impact on its searches. For the mass range
150 GeV <

∼ mh
<
∼ 300 GeV that we are considering in this article, the most important SM-like Higgs

boson search channels will be its decays into charged and neutral gauge bosons, namely

H → W± W∓

H → Z Z. (25)

These searches will become very efficient in the first years of the LHC run [14], and therefore
we expect these kind of models to be probed with the first few fb −1 of LHC running. Moreover,
if the Higgs mass is below 190 GeV, then even the Tevatron will be able to probe these models in
the coming years [15]. Indeed, the Tevatron has already excluded the existence of a SM-like Higgs
boson with mass between 160 and 170 GeV at the 95% confidence level, and is expected to probe
the whole range of masses, mh ∈ [150, 190] GeV, by the end of next year.

9

physics contribution to the T parameter, to sneutrino and stau masses:

mν̃ ! 150 (30) GeV

mτ̃ ! 195 (120) GeV. (23)

For a Higgs mass of 300 GeV, instead, we get a relatively heavier spectrum

mν̃ ! 380 (260) GeV

mτ̃ ! 480 (395) GeV. (24)

The sleptons should then acquire masses of the order of a few hundred GeV, with a relatively large
mass splitting, which grows for larger Higgs masses and is in the range of a few tens of GeV to more
than a 100 GeV. The results are shown in Figs. 2, 3 and 4. In Fig. 3 we have also drawn a straight
line with slope of mh/2. Sneutrinos below the line are potential candidates for Higgs decays.

[GeV]hm
100 150 200 250 300 350

[G
e
V
]

!"
m

0

100

200

300

400

500

Figure 2: Range of preferred values of the stau mass [GeV] as a function of the Higgs mass [GeV].

Furthermore, there exists a lower bound on the sneutrino mass, mν̃τ ! 40 GeV, coming from the
invisible decay width of the Z gauge boson measured at LEP[13]. This bound, as shown in Fig. 3,
is almost automatically fulfilled for sneutrino masses in the range selected by precision electroweak
measurements for mh > 150 GeV included in the plots.

8

Sparticle Spectrum Consistent with Precision Measurements

Assuming, for instance, that the sleptons are the lightest sfermions in the 
spectrum, we obtain

A. Medina, N. Shah, C.W.’09

Sleptons acquire values that are of the order of  the weak scale.  
Particle physics phenomenology depends on characteristics of SUSY spectrum. 
Different possibilities were studied in above reference. 
Observe that when the Higgs is at the current reach of the Tevatron, sneutrinos 
may be light.



Light sneutrinos and Higgs searches 
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Figure 4: Range of preferred values of the stau–sneutrino mass difference [GeV] as a function of the
Higgs mass [GeV].

The Higgs boson searches would change if there would be new, supersymmetric decays of the
Higgs bosons. If we assume that the lightest superpartner of the SM particles is the light tau-
sneutrino discussed in the last section, there is only a small region of parameters where these
decays would be open, and only for masses below 190 GeV, that coincides with the range to be
explored by the Tevatron collider. As can be seen from Fig. 3, for larger values of the Higgs mass, the
tau-sneutrino is sufficiently heavy as to avoid any Higgs decay into light supersymmetric particles.

For Higgs boson masses below 190 GeV the sneutrinos may be light enough to allow on-shell
decays of the Higgs into two sneutrinos. Moreover, the coupling of third generation sneutrinos to
the Higgs boson is enhanced with respect to the one in the MSSM, due to the enhanced SU(2)
D-term contribution and is given by

ghν̃τ ν̃τ ! −i
(g2∆ + g2

Y ) v

2
√

2
. (26)

Due to this enhanced coupling, the Higgs boson may have a significant decay branching ratio into
light sneutrinos, therefore avoiding the Tevatron bounds. More quantitatively, assuming masses
above the 2 mW threshold, the decay width for decays into two vector bosons is given by

Γ(h → V V ) !
GF (|QV | + 1) m3

h√
2 16 π

(

1 −
4m2

V

m2
h

+
12m4

V

m4
h

) (

1 −
4m2

V

m2
h

)1/2

(27)
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where GF is the Fermi constant, QV is the charge of the massive gauge boson, V = W±, Z, and
MV is its mass. For the decay into sneutrinos, instead, the result is

Γ(h → ν̃τ ν̃τ ) "
(g2∆ + g2

Y )2 v2

128 π mh

(

1 −
4m2

ν̃τ

m2
h

)1/2

. (28)

For instance, for a Higgs mass mh " 165 GeV and a sneutrino mass of about 70 GeV, the
branching ratio of the Higgs into a pair of W± gauge bosons is reduced to less than half of its SM
value, avoiding the current Tevatron bound. Somewhat smaller or larger values of the sneutrino
masses, within the range consistent with precision measurements and smaller than a half of the
Higgs mass, lead to more or less restrictive Tevatron bounds on this model, respectively.

4.2 Supersymmetric Particle Spectrum

In this section, we will work in the moderate tan β limit, which for universal scalar masses, tend
to lead to heavy non-standard Higgs bosons and is therefore close to the so-called decoupling limit
in the Higgs sector. In the foregoing discussion we assume that the mixing of left-handed and
right-handed third generation sleptons is small. Whether the lightest stau is mostly left-handed or
right-handed depends on the supersymmetry breaking mechanism. We will assume that τ̃1 is mostly
left-handed while τ̃2 is mostly right-handed, and present a mechanism that realizes this possibility
below.

The tree-level third generation Yukawa couplings are given by

ht =
gmt√

2mW sin β
, hb =

gmb√
2mW cos β

, hτ =
gmτ√

2mW cos β
. (29)

As is well known, hb and hτ can become comparable to ht in the large tan β regime. As previously
mentioned, we are interested in the moderate tan β limit and therefore only the top quark Yukawa
will be of importance. In the examples found later in the text, we take the reference value of
tan β = 10.

We shall assume that Yukawa couplings for the first and second generation quarks and leptons
are generated by adding a massive Higgs-like pair of doublets which transform under SU(2)2, as
was suggested in [5], and work with this minimal spectrum. With this minimal spectrum, the βi

function coefficients are given by

bY =
36

5
, b22 = 1, b21 = −1 b3 = −3, (30)

where b22 and b21 correspond to the SU(2)2 and SU(2)1 gauge groups, while bY and b3 correspond
to the hypercharge and strong interactions, respectively. The above values should be compared to
the MSSM case:

bY =
33

5
, b2 = 1, b3 = −3. (31)

This will generally upset unification of couplings [16]. Let us stress, however, that for the chosen
low energy values of these couplings, the SU(2)2 coupling α2 becomes close to αY and α3 at scales
of about the standard grand unification scale, MGUT ≈ 2 × 1016 GeV.
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Presence of light sneutrinos may affect Higgs searches,  in particular due to their 
enhanced couplings to Higgs bosons:

This should be compared with the width into gauge bosons

For instance, for a light sneutrino of order 70 GeV, and a Higgs mass
of about 170 GeV, the gauge boson width is reduced by half.

The Tevatron bounds can be therefore avoided.



Baryogenesis
At the phase transition at which SU(2) x SU(2) breaks to the weak group, 
a baryon and lepton number of the third generation is obtained

For large gauge couplings, this amount can be large. However, it is diluted 
by low energy weak sphalerons, that tend to dilute the obtained baryon 
number. But they preserve an asymmetry in the three generation lepton 
numbers :

Final baryon number is obtained by effects of this asymmetry during the 
second order electroweak phase transition.  This was studied by Dreiner 
and Ross.  They showed that the tau mass effects are enough to induce a 
final asymmetry in the baryon number.  Assuming the sphalerons are in 
equilibrium during the phase  transition, 

∆(B/3− Li) = 0where

α ≡ 6 − 3

2π2

6∑

i=1

m2
qi

T 2
, βi ≡ 1 − 1

π2

m2
li

T 2
. (8)

Electroweak Sphaleron transitions violate
∑

Li and B, but preserve the three combi-
nations ∆i ≡ Li − B/3. In terms of the chemical potentials these are

∆i ≡ Li −
1

3
B ≈ µT 2

9
α − µiT 2

2
βi , (9)

We can invert the above relations to obtain each µi in terms of the quark chemical potential
µ, temperature T , and the conserved value of the corresponding ∆i. Effectively, the EW
sphalerons convert nine quarks and one lepton of each family into nothing. In thermal
equilibrium, this leads to the relation µ = −

∑
i µi/9. Using this fact, together with the

three conservation equations Eq (9), allows us to express the quark chemical potential in
terms of the values of the ∆i,

µ =
( 2

T 2

3∑

i=1

∆i

βi

)(
9 +

2

9

3∑

i=1

α

βi

)−1
, (10)

which can be combined with Eq (6) to obtain the final baryon number density [33]

B =






4

13
(B − L) B − L $= 0

− 4
13π2

∑N
i=1 ∆i

m2
li

T 2 B − L = 0 .
(11)

The first of these results is the familiar relationship applicable to theories that directly
generate a non-zero B − L (such as leptogenesis) and indicates that in such theories
primordial B cannot be completely washed out, and a primordial L will be converted into
B by EW sphalerons. The second result shows how in a theory with B = L = 0 but
the individual ∆i non-zero, the turn on of the charged lepton masses will also generate a
non-zero B. In the scenario we are considering, with initially B = 0 and L3 = 2∆/3, and
taking the freeze-out temperature to be the close to the EW scale, the resulting baryon
number is diluted to about B ∼ 10−6∆ [9, 33, 34].

Since the dilution factor plays a relevant role in our work, let us expand on its origin:
To compute the above quoted dilution factor, we have assumed a second order phase
electroweak phase transition. Under this condition, the sphaleron processes will remain
in equilibrium until the weak spahleron rate is of the order of the expansion rate of the
Universe. The departure from equilibrium therefore occurs at the freeze-out temperature
TF , such that v(TF )/TF & 1. Using the relation mτ (T ) & hτ/

√
2v(T ), and the condition

v(TF )/TF = 1, we get that the final baryon number is approximately given by

B & − 4

13π2
∆

h2
τ

2
& −1.6 × 10−6∆. (12)
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• At the early phase transition, an asymmetry of order          may 
be obtained

• This early result is, however, diluted by standard sphaleron effects

• For a standard transition temperature of order of 100 GeV, the 
tau mass effects are approximately  equal to          , leading to a 
final result for the baryon asymmetry

• Consistency with observatioins therefore may be obtained 
within this framework

Baryogenesis from an early Phase Transition
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Electroweak Baryogenesis provides a very attractive framework for the 
obtention of the observed baryon asymmetry

Supersymmetry provides a natural realization of this scenario, for either 
light stops or (not discussed) light singlets

We explored the alternative possibility of generating the baryon number 
from an early phase transition, associated with strong interactions in the 
weak sector.

This scenario is motivated by a solution to the hierarchy problem and/or 
to explain the large differences in quark masses of different generations.  
Splitting between sparticles can compensate the precision electroweak 
corrections associated with a heavy Higgs.

Proton decay may be induced in this models, for sufficiently large values 
of the strong gauge couplings.

Baryogenesis may occur, in spite of standard sphaleron dilutioin, and for 
values of the gauge couplings consistent with proton stability.

Conclusions


