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Overview

• Primary Target of Group Research: 
Cosmological signatures of physics 
beyond the Standard Model

• Structure Formation Probes: Exploit 
nonlinear regime of structure formation 

• Discovery Science: Derive signatures 
of new physics, search for new 
cosmological probes 

• Precision Predictions: Aim to 
produce the best predictions and 
error estimates/distributions for 
structure formation probes (rough 
analogy with lattice QCD)

• Design and Analysis: Advance 
‘Science of Surveys’; contribute to 
major ‘Dark Universe’ missions: BOSS, 
DES, LSST, BigBOSS, DESpec --                             

LSST on Cerro Pachon 
MC2/HPM
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Structure Formation: The Basic Paradigm
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• Solid understanding of structure 
formation; success underpins most 
cosmic discovery

• Initial conditions laid down by 
inflation

• Initial perturbations amplified by 
gravitational instability in a dark 
matter-dominated Universe

• Relevant theory is gravity and 
atomic physics (‘first principles’)

• Early Universe: Linear perturbation 
theory very successful (CMB)

• Latter half of the history of the 
Universe: Nonlinear domain of 
structure formation, impossible to 
treat without large-scale computing           
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• Dark Energy: Properties of DE 
equation of state, modifications of 
GR, other models?                                          
Sky surveys, terrestrial experiments

• Dark Matter: Direct/Indirect 
searches, clustering properties, 
constraints on model parameters                                               
Sky surveys, targeted observations, 
terrestrial experiments

• Inflation: Probing primordial 
fluctuations, CMB polarization, non-
Gaussianity                                   
Sky surveys

• Neutrino Sector: CMB, linear and 
nonlinear matter clustering                                       
Sky surveys, terrestrial experiments

ROSAT (X-ray) WMAP (microwave)

Fermi (gamma ray) SDSS (optical)

Explosion of information from 
sky maps: Precision Cosmology 

Cosmological Probes of Physics Beyond the Standard Model
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• Cosmic Inverse Problem: From sky 
maps to scientific inference

• Cosmological Probes: Measure 
geometry and presence/growth of 
structure (linear and nonlinear)

• Examples: Baryon acoustic oscillations 
(BAO), cluster counts, CMB, weak 
lensing, galaxy clustering, --  

• Cosmological Standard Model: Verified 
at 5-10% with multiple observations

• Future Targets: Aim to control survey 
measurements to the ~1% level

• The Challenge: Theory and simulation 
must satisfy stringent criteria for  
inverse problems and precision 
cosmology not to be theory-limited!                                       

Precision Cosmology: “Inverting” the 3-D Sky

z<0.7

0.7>z>1.2

1.2>z>3

LSST weak lensing shear 
power spectrum

Planck, CMB temperature 
anisotropy power spectrum

SPT cluster redshift 
distribution

LCDM
EDE1
EDE2

LCDM
w=-0.9

LCDM projection

KH
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• Nonparametric Dark Energy Reconstruction: Holsclaw et al. 
PRL 2010, PRD 2010, PRD 2011 (submitted)

• Dark Matter Halos and Structure Formation: Bhattacharya et 
al. Ap. J. 2011, Lukic et al. Ap. J. 2009, Evrard et al. Ap. J. 
2008, Lukic et al. Ap. J. 2007

• Understanding the ‘Cosmic Web’: Shandarin et al. PRD 2010

• BAO with the Ly-α Forest: White et al. Ap. J. 2010

• Fossil Groups: Voevodkin et al. Ap. J. 2010, 2008

• Cosmic Calibration: Habib et al. PRD 2007, Schneider et al. 
PRD 2008

• Community Cosmology Code Comparison: Heitmann et al. 
Comput. Sci. Dis. 2008

• ‘Coyote Universe’ Project: Lawrence et al. Ap. J., 2010, 
Heitmann et al. Ap. J. 2010, 2009

• Advanced Cosmological Simulations: Habib et al. J. Phys. 
Conf. 2009, Pope et al. Comp. Sci. Eng. 2010                                    

Recent Research Highlights/Activities

2011

SF Cosmology Workshops

1999-Ongoing
DOE HEP support

Large Datasets in 
Astrophysics & Cosmology 

Great Surveys Workshop
(Astro2010 position paper) 

2008

2011
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• Simulation Volume: Large survey sizes impose simulation 
volumes ~ (3 Gpc) , with memory requirements ~100 TB 

• Number of Particles: Mass resolutions depend on 
ultimate object to be resolved, ~10   --10    solar 
masses, N~10   --10

• Force Resolution: ~kpc, yields a (global) spatial dynamic 
range of 10

• Hydrodynamics/Sub-Grid Models: Phenomenological 
treatment of gas physics and feedback greatly adds to 
computational cost

• Throughput: Large numbers of simulations required 
(100’s --1000’s), development of analysis suites, and 
emulators; peta-exascale computing exploits

• Data-Intensive-SuperComputing: End-to-End simulations 
and observations must be brought together in a DISC 
environment (theory-observation feedback)

Computing the Universe: Simulating Surveys

3

11 12
8 10

6
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Hardware-Accelerated Cosmology Code (HACC) Framework

• Architecture Challenge: HPC is rapidly 
evolving (clusters/BG/CPU+GPU/MIC --)

• Code for the Future: Melds optimized 
performance, low memory footprint, 
embedded analysis, and cross-platform 
scalability

• Implementation: Long/short-range force 
matching with spectral force-shaping     
(long-range=PM, short-range=PP, tree)

• Key Features: Hybrid particle/grid 
design, particle overloading, high-order 
spectral operators, ~50% of peak Flops

• Embedded Analysis: High performance 
with low I/O and storage requirement

• Early Science Project on Mira: 150M 
CPU-hrs on ANL BG/Q (summer 2012)

Perfect scaling on Roadrunner,
64 billion particle hi-res run 

now completing

Titan
20 PFlops

Roadrunner
2 PFlops

Habib et al. 2009, Pope et al. 2010 

Mira
10 PFlops
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HACC in the HPC/DISC Future

Zoom-in on a high-resolution HACC 
run, particles colored by potential 

• HACC as Exascale Co-Design Driver: 
Most codes cannot meet future science 
requirements and HPC constraints, 
HACC capabilities already demonstrated 
on Cell and GPU-accelerated systems

• Synergies with HEP: Accelerators, LQCD

Tier I
Data

Tier II 
Data

Observation 
Feed

*DISC=Data-Intensive SuperComputer

*
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Cosmic Calibration: Solving the Inverse Problem

• Challenge: To extract cosmological 
constraints from observations in the 
nonlinear regime, need to run 
Markov Chain Monte Carlo; input: 
10,000 - 100,000 different models

• Brute Force: Simulations, ~30 years 
on 2000 processor cluster ---

• Current Strategy: Fitting functions, 
e.g. for P(k), accurate at 10% level, 
not good enough!

• Our Solution: Precision emulators

Run suite of simulations 
(40,100,...) with chosen 

parameter values

Design optimal simulation 
campaign over (~20) 

parameter range

Statistics Package 
(Gaussian Process 
Modeling, MCMC) 

Response 
surface; 
emulator 

Calibration
Distribution 

Observation 
input 

Predictive 
Distribution

Model 
inadequacy, 

self calibration 
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CosmicEmu
publicly available

Optimal sampling 

Heitmann et al. 2006, Habib et al. 2007
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Cosmic Emulator in Action

• Instantaneous ‘oracle’ for nonlinear power spectrum, easy to use, 
reduces run time from weeks to ‘zero’, 1% accurate to k~1/Mpc for 
wCDM cosmologies -- based on ~1000 simulation runs for 38 cosmologies

• For the first time enables direct MCMC with results from full simulations

Heitmann et al. 2009, 2010
 Lawrence et al. 2010

Eifler 2011
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Cosmic Emulators for Future Surveys

• Extension Beyond wCDM: 

Currently fine-tuning number of 
models and parameter ranges with 
surrogates, input from community

• Emulators for a Variety of 
Observables: power spectrum, mass 
function (different mass definitions), 
shear power spectrum, peak 
statistics, bias, ---

• Extension of Range of Validity: 
Higher resolution, baryonic physics

• Covariances
1014 1015 1016

Halomass [M  ]

dn
/d

lo
gM

 [
1/

M
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³]

10 -4

10 -8

10-12

10-16
Mass function prediction
assuming universality, 

10% accurate, 100 models 

10.10.010.001

1
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Linear power spectrum, 
100 models, 10 parameters 

θ = {ωm,ωb, ns, w0,σ8,

wa, dns/d log k, h,Ωk, fν}
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Summary and Outlook

• New ‘Cosmic Frontier’ Theory Group at 
ANL focused on cosmological probes of 
physics beyond the Standard Model

• Expertise covers quantum field theory, 
physical cosmology, high-performance 
computing, and cosmological surveys

• Strong connections to the Argonne 
Leadership Computing Facility

• Strong University and DOE Lab 
collaborations, opportunities for 
students

• Science-rich, large-scale simulations 
and analysis tools will be made 
available to the community

Roadrunner view (halos) of the Universe at z=2 from 
a 64 billion particle run

Mock catalog for SDSS luminous red galaxies (orange) 
and satellite galaxies (green), in coll. with M. White

BOSS Ly-alpha simulation 

SDSS LRG mock catalog 
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06

Broader Research Community

New Concepts

Project Design 
PhaseDataScience

Project Cosmic Frontier 
research loop

• Resides as a core 
capability program 
within DOE HEP

• Contributes to 
‘discovery space’

• Catalyzes development 
of  concepts into 
projects

• Plays a key role in 
project optimization

• Is an essential 
component of the 
‘Data to Science’ step 
for projects   

• Functions as a major 
community resource              

Locating the DOE HEP Computational Cosmology Program

Key Contributions

Computational
Cosmology
Program

Friday, July 22, 2011



DOE HEP Computational Cosmology Program Advantages

07

• Key Roles

• One-point contact for scientists, 
projects, and programs

• In-house theory, modeling, and 
simulation capability

• Connection to HEP computing

• Efficient collaboration, ability to 
work to milestones/time tables

• Repository of ‘Lessons Learnt’ and 
‘Best Practices’ (crucial in precision 
cosmology)

• Continuous development paths

• Develop and maintain simplified 
‘detector model’ views of project 
space (hunt for subtle signals)

• Connections across projects (joint 
analyses)

Analysis Software

Cosmological Simulation

Observables

Experiment-
specific output 

(e.g., sky catalog)

Atmosphere

Telescope

Detector

Pipelines

Pr
oj
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t
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Sc
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nc

e

Notional theory 
and project 
task division
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HACC Example I: Roadrunner (CPU+Cell)BOSS 

• Hybrid machine architecture, out of balance 
communication (50-100) and performance (20)         

• Multi-level programming paradigm
• ‘On the fly’ analysis to reduce I/O
• Prototype for exascale code design problems 
• Scalable approach extensible to all next-generation 

architectures (BG/Q, CPU/GPU, --)

MPI

C/C++

C/SPU
Intrinsics

DaCS

16GB

16GB 100TB total RAM
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HACC Example 2: CPU+GPUOSS Ly-alpha simulation 

• CPU/GPU performance and 
communication out of balance, 
unbalanced memory (CPU/main memory 
dominates)         
• Multi-level programming (mitigate with 

OpenCL)
• Particles in CPU main memory, CPU does 

low flop/byte operationsProto
• Stream slabs through GPU memory (pre-

fetches, asynchronous result updates)
• Data-parallel kernel execution
• Many independent work units per slab -- 

many threads, efficient scheduling, good 
performance achieved (improves on Cell)
• Scalability of HACC is the same across all 

‘nodal’ variants
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HACC Algorithmic Details 1

Overload Zone (particle “cache”)

• Solve compute imbalance: Split 
problem into long-range and 
short-range force updates

• Long-range handled by a grid-
based Poisson solver

• Direct particle-particle short-
range interactions 

• Simplify and speed-up Cell 
computational tasks       

• Reduce CPU/Cell traffic to avoid 
PCIE bottleneck: use simple CIC 
to couple particles to the grid, 
followed by spectral filtering on 
the grid

• Reduce inter-node particle 
communication: particle caching/
replication (ghost zone analog)

• ‘On the fly’ analysis and 
visualization to reduce I/O
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HACC Algorithmic Details 2
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Noisy CIC PM force

6th-Order sinc-Gaussian 
spectrally filtered CIC PM 

force

Ratio to 1/r

CIC PM

Spectrally filtered “Quiet” PM: 
Force noise for individual pair 
interactions reduced to a few 
percent

2

2

• Spectral smoothing of the CIC 
density field allows 6-th order 
Green function and 4th order 
super-Lanczos gradients for high-
accuracy Poisson-solves
• Short-range force is fit to the 

numerical difference between 
Newtonian and long-range force 
(not conventional P  M) 
• Short-range force time-steps are 

sub-cycled within long-range 
force kicks via symplectic 
algorithm
• Short-range computations 

isolated as essentially ‘on-node’, 
replace or re-design for different 
architectures (e.g., BG/Q or GPU)

3
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