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First Words

• This is a very broad subject that has been in constant 
evolution for the last 40 years
– New geometries are still being developed
– Performance is still improving

• This tutorial cannot cover everything
– I will focus on the fundamentals
– It is intended to be complementary to the tutorial given by 

Alberto Facco at SRF 2009 with little overlap
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• There have been increased needs for reduced-beta (β<1) SRF 
cavity  especially in CW machine (or high duty pulsed machine; 
duty >10 %)

• Accelerator driven system (ADS)
Nuclear transmutation of long-lived radio active waste
Energy amplifier
Intense spallation neutron source

• Nuclear physics
Radioactive ion acceleration
Muon/neutrino production

• Defense applications

• SRF technology Critical path !!

Introduction
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• SRF cavity for CW application or long pulse application
• efforts for expanding their application regions down to β~0.1,

• Reduced beta Elliptical multi-cell SRF cavity 
• for CW, prototyping by several R&D groups have demonstrated 

as low as β=0.47
• for pulsed, SNS β=0.61, 0.81 cavities & ESS

• Elliptical cavity has intrinsic problem as β goes down
• mechanical problem, multipacting, low RF efficiency

• Spoke cavity; supposed to cover ranges β=0.1~0.5(6), f=300~900 MHz
• design & prototype efforts in RIA, AAA, EURISOL, XADS, ESS, etc.

For proton β=0.12 corresponds ~7 MeV all the accelerating structures 
(except  RFQ)

Introduction
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Low and Medium β Superconducting Accelerators

Accelerator driven systems
waste transmutation
energy production

Production of radioactive ions

Nuclear Structure

Pulsed spallation sources

High Current Medium/Low Current

CW

Pulsed



Page 6

High-current cw accelerators

• Beam: p, H-, d 
• Technical issues and challenges

– Beam losses (~ 1 W/m)
– Activation
– High cw rf power
– Higher order modes
– Cryogenics losses

• Implications for SRF technology
– Cavities with high acceptance
– Development of high cw power couplers
– Extraction of HOM power
– Cavities with high shunt impedance
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High-current pulsed accelerators

• Beam: p, H-

• Technical issues and challenges
– Beam losses (~ 1 W/m)
– Activation
– Higher order modes
– High peak rf power
– Dynamic Lorentz detuning

• Implications for SRF technology
– Cavities with high acceptance
– Development of high peak power couplers
– Extraction of HOM power
– Development of active compensation of dynamic Lorentz 

detuning



Page 8

Medium to low current cw accelerators
• Beam; p to U
• Technical issues and challenges

– Microphonics, frequency control
– Cryogenic losses
– Wide charge to mass ratio
– Multicharged state acceleration
– Activation 

• Implications for SRF technology
– Cavities with low sensitivity to vibration
– Development of microphonics compensation
– Cavities with high shunt impedance
– Cavities with large velocity acceptance (few cells)
– Cavities with large beam acceptance (low frequency, small 

frequency transitions)
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Common considerations (I)

• Intermediate velocity applications usually do not require (or cannot 
afford) very high gradients 

• Operational and practical gradients are limited by
– Cryogenics losses (cw applications)
– Rf power to control microphonics (low current applications)
– Rf power couplers (high-current applications)

• High shunt impedance is often more important

• To various degrees, beam losses and activation are a consideration
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Common considerations (II)

• Superconducting accelerators in the medium velocity range 
are mostly used for the production of secondary species
– Neutrons (spallation sources)
– Exotic ions (radioactive beam facilities)

• Medium power (100s kW) to high power (~MW) primary 
impinging on a target

• Thermal properties and dynamics of the target are important 
considerations in the design of the accelerator (frequency, 
duration, recovery from beam trips)

• Some implications:
– Operate cavities sufficiently far from the edge
– Provide an ample frequency control window
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Design considerations
• Low cryogenics losses

– High QRs * Rsh/Q
– Low frequency

• High gradient
– Low Ep/Eacc
– Low Bp/Eacc

• Large velocity acceptance
– Small number of cells
– Low frequency

• Frequency control
– Low sensitivity to microphonics
– Low energy content
– Low Lorentz coefficient

• Large beam acceptance
– Large aperture (transverse acceptance)
– Low frequency (longitudinal acceptance)
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A Few Obvious Statements
Low and medium β 

β<1
Particle velocity will change

The lower the velocity of the particle or cavity β
The faster the velocity of the particle will change
The narrower the velocity range of a particular cavity
The smaller the number of cavities of that β
The more important it is that the particle achieve design velocity

Be conservative at lower β
Be more aggressive at higher β
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A Few More Statements
Two main types of structure geometries

TEM class (QW, HW, Spoke)
TM class (elliptical)

Design criteria for elliptical cavities
Pagani, Barni, Bosotti, Pierini, Ciovati,  SRF 2001.

Challenges and the future of reduced beta srf cavity design
Sang-ho Kim, LINAC 2002.

Low and intermediate β cavity design
Jean Delayen, SRF 2003

High-energy ion linacs based on superconducting spoke cavities
K. W. Shepard, P. N. Ostroumov, J. R. Delayen, PRSTAB 6, 080101 (2003)
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Superconducting Structures – Circa 1987
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β<1 Superconducting Structures – Circa 1989
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β<1 Superconducting Structures – 2002..
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Basic Structure Geometries

Resonant Transmission Lines
– λ/4 

• Quarter-wave
• Split-ring
• Twin quarter-wave
• Lollipop

– λ/2
• Coaxial half-wave
• Spoke
• H-types

– TM
• Elliptical
• Reentrant

– Other
• Alvarez
• Slotted-iris
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A Word on Design Tools

TEM-class cavities are essentially 3D geometries

3D electromagnetic software is available
MAFIA, Microwave Studio, HFSS, etc.

3D software is usually very good at calculating frequencies
Not quite as good at calculating surface fields

Use caution, vary mesh size
Remember Electromagnetism 101
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Design Tradeoffs

Number of cells
Voltage gain
Velocity acceptance

Frequency
Size
Voltage gain
Rf losses
Energy content, microphonics, rf control
Acceptance, beam quality and losses
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Velocity Acceptance
• Energy gain

Transit time factor for single cell
Depends on field profile in cell

Phasing factor in multicell cavities
Depends on cell spacing and field amplitude in cells
Does not depend on field profile in cells (assumed to 

be identical)
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Velocity Acceptance
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Energy Gain 
Transit Time Factor - Velocity Acceptance

Assumption: constant velocity
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Transit Time Factor

(a)

(b)
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Velocity Acceptance for 2-Gap Structures
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Velocity Acceptance for 3-Gap Structures
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Higher-Order Effects

( )2
0 (2) (2)

0

(2)

(2)
2

0

cos ( ) ( ) sin 2 ( )

( ) ( ) ( ) /
4

( ) ( ) ( ) ( )( )
4

s

s

q W
W q W T T T

W
k dT k T k T k k c

dk
k T k k T k k T k T kT k dk

k

f b b f b

w b

p

•

D
È ˘D = D + +Î ˚

= - =

+ - -¢ ¢= - ¢
¢Ú



Page 27

A Simple Model: 
Loaded Quarter-wavelength Resonant Line

If characteristic length <<λ (β<0.5), separate the problem in two parts:
Electrostatic model of high voltage region
Transmission line

/ 4
zV

l
=
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Basic Electrostatics
a: concentric spheres
b: sphere in cylinder
c: sphere between 2 planes
d: coaxial cylinders
e: cylinder between 2 planes

Vp : Voltage on center conductor
Outer conductor at ground
Ep: Peak field  on center conductor
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Loaded Quarter-wavelength Resonant Line

Capacitance per unit length

Inductance per unit length
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Loaded Quarter-wavelength Resonant Line

Center conductor voltage

Center conductor current

Line impedance
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Loaded Quarter-wavelength Resonant Line

Loading capacitance
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Loaded Quarter-wavelength Resonant Line

Peak magnetic field
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Loaded Quarter-wavelength Resonant Line

Power dissipation (ignore losses in the shorting plate)
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Loaded Quarter-wavelength Resonant Line

Energy content
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Loaded Quarter-wavelength Resonant Line

Geometrical factor
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Loaded Quarter-wavelength Resonant Line

Shunt impedance
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R/Q

Loaded Quarter-wavelength Resonant Line
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Loaded Quarter-wavelength Resonant Line
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Loaded Quarter-wavelength Resonant Line

MKS units, lines of constant normalized loading capacitance Γ/λε0
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More Complicated Center Conductor Geometries
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Constant logarithmic derivative of line capacitance
Good model for linear taper

Constant surface magnetic field
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Profile of Constant Surface Magnetic Field
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Profile of Constant Surface Magnetic Field

MKS units, lines of constant normalized loading capacitance Γ/λε0
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Another Simple Model:
Coaxial Half-wave Resonator

2b

2a

L
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Coaxial Half-wave Resonator

Capacitance per unit length

Inductance per unit length
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Coaxial Half-wave Resonator

Center conductor voltage

Center conductor current

Line impedance
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Coaxial Half-wave Resonator

d: coaxial cylinders

Vp : Voltage on center conductor
Outer conductor at ground
Ep: Peak field  on center conductor

Peak Electric Field
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Coaxial Half-wave Resonator

Peak magnetic field
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Coaxial Half-wave Resonator

Power dissipation (ignore losses in the shorting plate)

2 0
2 2

0

2 2
2

1 1/
4 ln

s
p

s

R
P V

b
RP E

rp l
h r

b l
h

+
=

μ

2b

2a

L



Page 50

Coaxial Half-wave Resonator

Energy content
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Coaxial Half-wave Resonator

Geometrical factor
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Coaxial Half-wave Resonator

Shunt impedance
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Coaxial Half-wave Resonator

R/Q

( )02

8 ln 1/sh

sh

R
Q
R
Q

h r
p

h

=

μ

2b

2a

L



Page 54

Some Real Geometries (λ/4)
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Some Real Geometries (λ/4)
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λ/4 Resonant Lines
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λ/2 Resonant Lines
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λ/2 Resonant Lines – Single-Spoke
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λ/2 Resonant Lines – Double and Triple-Spoke
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λ/2 Resonant Lines – Multi-Spoke



Page 61

Field Profiles

Electric Field

Magnetic Field
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Surface Electric Field
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Surface Magnetic Field
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RF Geometry Optimization (Spoke Cavity)
•There have been extensive efforts for design optimization especially to reduce the ratios of 

Ep/Eacc and Bp/Eacc.
• Controlling A/B (Ep/Eacc) and C/D (Bp/Eacc) Shape optimization
• Flat contacting surface at spoke base will help in another minimization of Bp/Eacc
• For these cavities:

Calculations agree well Ep/Eacc~3, Bp/Eacc~(7~8) mT/(MV/m),
though it is tricky to obtain precise surface field information from the 3D 

simulation.
Intrinsically have very strong RF coupling in multi-gap cavity.
Have rigid nature against static and dynamic vibrations.
Beta dependency is quite small.
Diameter~half of elliptical cavity.
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Surface Electric Field

• TM010 elliptical structures
– Ep/Ea ~ 2 for β =1 
– Increases slowly as β decreases

• λ/2 structures:
– Sensitive to geometrical design
– Electrostatic model of an “shaped geometry” gives 

Ep/Ea ~ 3.3, independent of β
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Surface Electric Field

• Lines: Elliptical               Squares: Spoke
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Surface Magnetic Field

• TM010 elliptical cavities:
– B/Ea ~ 4 mT/(MV/m) for β=1
– Increases slowly as β decreases

• λ/2 structures:
– Sensitive to geometrical design
– Transmission line model gives B/Ea ~ 8 mT/(MV/m), 

independent of β
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Surface Magnetic Field

• Lines: Elliptical               Squares: Spoke
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Geometrical Factor (QRs)

• TM010 elliptical cavities:
– Simple scaling: QRs ~ 275 β (Ω)

• λ/2 structures:
– Transmission line model:  QRs ~ 200 β (Ω)
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Geometrical Factor (QRs)

• Lines: Elliptical               Squares: Spoke
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Rsh/Q per Cell or Loading Element

• Rsh= V2/P
• TM010 elliptical cavities:

– Simple-minded argument, ignoring effect of beam line 
aperture, gives: 

– When cavity length becomes comparable to beam line 
aperture :

– Rsh/Q ~ 120 β2 (Ω)

• λ/2 structures:
– Transmission line model gives: Rsh/Q ~ 205 Ω
– Independent of β

/shR Q bμ

2/shR Q bμ
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Rsh/Q per Cell or Loading Element
Lines: Elliptical               Squares: Spoke
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Shunt Impedance Rsh
(Rsh/Q  QRs per Cell or Loading Element)

• TM010 elliptical cavities:
– Rsh Rs ~  33000 β3 (Ω2)

• λ/2 structures:
– Rsh Rs ~  40000 β (Ω2)



Page 74

Shunt Impedance Rsh
(Rsh/Q  QRs per cell or loading element)
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Energy Content per Cell or Loading Element

Proportional to E2λ3

At 1 MV/m, normalized to 500 MHz:
• TM010 elliptical cavities:

– Simple-minded model gives 
– In practice: U/E2 ~ 200-250 mJ
– Independent of β (seems to increase when β <0.5 – 0.6)

• λ/2 structures:
– Sensitive to geometrical design
– Transmission line model gives U/E2 ~ 200 β2 (mJ)

2/U E bμ



Page 76

Energy Content per Cell or Loading Element
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Size & Cell-to-Cell Coupling

TM010 Structures
Dia ~  0.88 – 0.92 λ
Coupling ~ 2%

λ /2 Structures
Dia~ 0.46 – 0.51 λ
Coupling ~ 20 - 30%

Example : 350 MHz, β= 0.45
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Multipacting

• TM010 elliptical structures
– Can reasonably be modeled and 

predicted/avoided
– Modeling tools exist

• λ/2 Structures
– Much more difficult to model
– Reliable modeling tools do not exist
– Multipacting “always” occurs
– “Never” a show stopper
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TM Structures – Positive Features

• Geometrically simple

• Familiar

• Large knowledge base

• Good modeling tools

• Low surface fields at high β

• Small number of degrees of freedom
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λ/2 Structures – Positive Features

• Compact, small size

• High shunt impedance

• Robust, stable field profile  (high cell-to-cell 
coupling)

• Mechanically stable, rigid (low Lorentz 
coefficient, microphonics) 

• Small energy content 

• Low surface fields at low β

• Large number of degrees of freedom
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Features of Spoke Cavities

• Strong cell-to-cell coupling in multi-spoke
– All the cells are linked by the magnetic field
– Field profile robust with respect to manufacturing inaccuracy
– No need for field flatness tuning
– Closest mode well separated

Magnetic Field Profile: 352 MHz, β=0.48 (FZJ)
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Features of Spoke Cavities

• Accelerating mode has lowest frequency
– No lower-order mode
– Easier HOM damping

M. Kelly (ANL)
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Features of Spoke Cavities
• Electromagnetic energy concentrated near the 

spokes
– Low energy content
– High shunt impedance
– Low surface field on the outer surfaces

• Couplers (fundamental and HOM) can be located on outer conductor
• Couplers do not use beamline space
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Features of Spoke Cavities

• Peak surface electromagnetic fields
– At high β, peak surface electromagnetic fields tend to be 

higher for spoke cavities
– Difference may be small at constant real estate gradient
– Spoke cavities will usually be used in applications where 

gradients are modest (cw and/or high-current)
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Features of Spoke Cavities
• Few mechanical modes, none at low frequency

Lorentz Transfer Function: 345 MHz, β=0.5, triple-spoke (Z. Conway, ANL) 
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Spoke Cavities Worldwide

G. Olry, IPN Orsay
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Experimental Results

• Achieved gradients (single spoke)

352 MHz, β=0.35 (IPN Orsay)
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Experimental Results

• Achieved gradients (triple spoke)

345 MHz, β=0.5 (ANL) 345 MHz, β=0.63 (ANL)
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Experimental Results

• Hydrogen degassing at 6000C (triple spoke)

Open symbols: 345 MHz, β=0.5 (ANL) Closed symbols: 345 MHz, β=0.63 (ANL)
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Experimental Results

• Sensitivity to magnetic field
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Experimental Results

• Microphonics and sensitivity to He pressure

345 MHz, β=0.5, triple-spoke (Z. Conway, ANL) 

df/dp= -9.6 Hz/mbar df/dp= -0.4 Hz/mbar

Before optimization After optimization
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Experimental Results

• Microphonics control with piezo tuners

345 MHz, β=0.5 Triple spoke (ANL)
Low frequency microphonics intentionally enhanced by connecting the cavity to forced-flow system
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EURISOL
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EURISOL

β=0.15
β=0.35

IPN Orsay
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EUROTRANS
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Spoke Cavity Integrated Tests (Orsay)

Sebastien Bousson, 4th meeting ESSS reference group
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Fermilab Project X

Section Freq Energy (MeV) Cav/mag/CM Type

SSR0 (βG=0.11) 325 2.5-10 26 /26/1 SSR, solenoid
SSR1 (βG=0.22) 325 10-32 18 /18/ 2 SSR, solenoid

SSR2 (βG=0.4) 325 32-160 44 /24/ 4 SSR, solenoid
LB 650   (βG=0.61) 650 160-520 42 /21/ 7 5-cell elliptical, doublet

HB 650   (βG=0.9) 650 520-2000 96 /12/12 5-cell elliptical, doublet
ILC  1.3 (βG=1.0) 1300 2000-3000 64 / 8/ 8 9-cell elliptical, quad

SSR0 SSR1 SSR2 β=0.6 β=0.9

325 MHz
2.5-160 MeV

ILC

1.3 GHz 
2-3 GeV

650 MHz 
0.16-2 GeV
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Fermilab Project X

325 MHz, β=0.22
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European Spallation Source
Bilbao 2009 concept

Scandinavia 2009 concept



Page 100

European Spallation Source

2010 concept
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How High Can We Go with βg in Spoke Cavities?

• What are their high-order modes properties?
– Spectrum

– Impedances

– Beam stability issues

• Is there a place for spoke cavities in high-β high-
current applications?
– FELs, ERLs

– Higher order modes extraction
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How High Can We Go with βg in Spoke Cavities?

• Activities in this area are finally starting
– 325 and 352 MHz, β= 0.82 and 1
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SC cavities covering the velocity range 0.12 <  β < 0.8 
developed for the RIA driver linac and will be used in AEBL

345 MHz β=0.5

Triple-spoke

345 MHz β=0.62

Triple-spoke

115 MHz β=0.15 
Steering-

corrected QWR

172.5 MHz
β=0.28 HWR

345 MHz β=0.4 
double-spoke

Courtesy P. Ostroumov and K. 
Shepard
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ANL extended to TEM-class SC cavities the very high-
performance techniques pioneered by TESLA

Courtesy P. Ostroumov and K. 
Shepard
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Effects of interstitial hydrogen on triple-spoke cavity performance
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Resonators for FRIB @ MSU
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Resonators for FRIB
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Resonators for FRIB
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Resonators for FRIB
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Resonators for FRIB
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Resonators for FRIB
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Resonators for FRIB
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Resonators for FRIB
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Resonators for Crabbing and Deflecting

B field E field

+

+-

-4-rod resonator
Lancaster University/Cockcroft Institute



Page 115

Resonators for Crabbing and Deflecting

E field on mid plane 
(Along the beam line) B field on top plane

Parallel-Bar
Old Dominion University
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Resonators for Crabbing and Deflecting

Parallel-bar Resonators – Old Dominion University
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Parting Words
In the last ~40 years, the development of TEM-class 
superconducting cavities has been one of the richest and 
most imaginative area of srf
The field has been in perpetual evolution and progress
New geometries are constantly being developed
The final word has not been said

The parameter, tradeoff, and option space available to the 
designer is large

The design process is not, and probably will never be, reduced to a 
few simple rules or recipes
There will always be ample opportunities for imagination, originality, 
and common sense
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