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Secondary Electron Yield

Our testing technique has gone through several modifications

— Optimizing for data acquisition speed and accuracy

— Correlate XPS, UPS, and SEY from measured data
Tested Materials

— Al,O5 and MgO for emissive materials

— Mo, Au, and Cu for comparison with literature and theoretical calculations
Electron-Dose Effect

— Emission changes as a function of electron fluence

— Does this relate to ‘scrubbing’ process

— Exploring different techniques to examine what’s changing
* Chemistry and composition
« Morphology

Discussion and Summary




SEY Testing Setup

= Low energy electron diffraction (LEED) setup
— Electrons are emitted at constant energy (950 eV)
— Sample is biased using a computer-controlled Keithley Sourcemeter
— Bias is adjusted to allow for primary electron energy ranges between 0 and 950eV
— Collector is inefficient for highly emissive materials (electron-electron repulsion)

) is now determined at beginning of scan and set as a constant

— Beam current (I
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Secondary Electron Yield (per primary)

Gold Standard

= Ar*-ion sputtering affects both surface composition and morphology

— Cand O, as well as unobserved surface features, may be responsible for the difference in
secondary electron yield
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Secondary Electron Yield (per primary)

Gold Standard

Results are comparable to literature and calculations
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Gold Standard

= UPS spectrum using 21.22 eV helium emission and a -50V sample bias
— 5d;, located at ~4.3eV binding energy (with respect to E;)
— 5d,,, located at ~6.1eV binding energy (with respect to Ey)
— Work function = 21.2-(66.8-50) = 4.4eV (does not account for detector ‘work function’)
— Previous tests have shown analyzer resolution of about 0.7eV
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Other Test Materials

Secondary Electron Emission (per primary)

Gold is rather simple
— Chemically clean/stable surface

Other materials (Mo and Cu) are not so
simple

— Surface is not chemically stable

— Many parameters affect SEY

— Many of the published results do not
agree, but do not incorporate the same
techniques
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MCP Secondary Electron Emission Materials

= Films are deposited using Atomic Layer Deposition (ALD).
= Deposited on conductive Si substrates.
= Various thicknesses have been and will continue to be studied.

= Conductive substrate coatings were initially used when we thought sample charging
was affecting sample charging. It has since been determined that the conductive Si
Is sufficient for our studies.

= So far Al,O; and MgO have been tested.



Secondary Electron Yield (per primary)

Al,O; Emission vs. Thickness and Electron Fluence

*Al,O, was provided by Jeff Elam’s group (Qing, Anil)
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Al,O; Emission vs. Thickness
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XPS of AlO,
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Secondary Electron Yield (per primary)
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MgO

Selected Data Averaged

Not nearly as large of a
difference between samples
as was seen in the Al,O,
samples.

This experiment should be
pursued further to determine
if the similarity in emission is
real.

Examining the electron-dose
effect may help us here
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XPS of MgO

Presence of multiple carbon compounds are evident
One is most likely a carboxyl, based on double oxygen peak near 531 eV
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Overall Comparison

= Tungsten was initially used

to try to reduce what we . - . - . : . : -
thought was a charging ! -
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Electron-Dose Effect

— Emission decreases with increased fluence
= MgO

— Emission increases with increased fluence

= We will explore why this is the case initially using XPS and SEM

— Focused electron beam from LEED system does not cover a large enough area for our
XPS system to detect any chemical or compositional changes.

— Defocused electron beam from separate gun will be used.
= Mass spectrometry should be used to detect material liberated from the sample



Future Work and Additional Techniques/Equipment

= Preparing for large-area, electron bombardment

— Monitor and study does effect
= Will monitor SEY as a function of sample temperature
= May have access to thin-film diamond samples

— May prove useful for first strike material

= Writing control software (LabView) to integrate all systems into one control system

— Ideally, we would like to have complete control over the lens system for the
hemispherical analyzer

— Optimize energy resolution of XPS and UPS
= Designing/preparing new sample holder that is compatible with transmission
photocathodes, sample heating, and can hold at least one sample for long term
storage (faraday cup)
= Specifications:
— High sensitivity
— Considering 510 amu, 1000amu options
= Studies will be conducted in loadlock chamber
— Some species can be liberated using a simple heater
— Effects of electron bombardment can be monitored



Mass Spectrometry

= Specifications:
— High sensitivity
— Considering 510 amu, 1000amu options
= Studies will be conducted in loadlock chamber
— Some species can be liberated using a simple heater
— Effects of electron bombardment can be monitored
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