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Background

* Neutrino properties one of the four “big Questions” identified by the
Astro 2010 Panel on Cosmology and Fundamental Physics
- the mechanism responsible for inflation
- the nature of dark energy and/or other explanations for the
accelerating universe
- the nature of the dark matter
- V properties: masses, mixing angles, lepton no. of the cosmos

* New V properties are our one discovery beyond the minimal SM
- Dirac masses require a RHed V field, absent from the SM
- Majorana masses correspond to the simplest “effective operator”
correction to the SM, requiring a new physics scale |/Mnew

* Initial discoveries were made in astrophysics, but now an exciting
interface between lab and cosmological vV physics has been established
- there are critical vV properties issues, important to the progress
of the field, that may only be answerable in cosmology



V’s richer mass structure, compared

other SM fermions
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The absence of any additively conserved charge allows the addition of
Lo(z) = MpV(x)¥(z) + (VS (2) MV (2) + P5(2)MrpVg(x) + h.c.)

to give the more general matrix
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which has a number of interesting properties, including

e the introduction of M}, My breaks the global invariance ¥ — €V
associated with a conserved lepton number

 while My, couples ¥, , weak isospin requires a novel mass mechanism



2 Neutrinos meet the Higgs boson Hitoshi Muryama’s V mass
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This was one reason the initial oscillation results were so exciting:
* give the V an Mp typical of other SM fermions

* take ML~ 0,in accord with B decay

* assume Mg >> Mp as we have not found new RHed physics at low E

0 mp . gplight (mp) the needed
mp Mg Y D \'mr small parameter!

e take my ~ vV/m?33 ~ 0.05 eV and mp ~ myp ~ 180 GeV

= mr ~ 0.3 x 10> GeV

The deduced vV atmospheric mass difference is consistent with a novel mass
generation mechanism, not shared by other SM fermions, that the data suggest
might be characteristic of the GUT scale



The Laboratory/Cosmology Program

Important questions unanswered
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The mixing (where we have additional blanks to fill in)
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If there are no surprises, progress is needed in four areas

|) absolute mass scale

2) lepton number and the mass mechanism

3) the hierarchy: new matter effects in LBNE

4) CP violation and associated questions about the size of 03

A 15-20 year lab program is taking shape ~ $2-3B



Absolute V mass: the one identified component of DM
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tritium [ decay is running into intrinsic limits due to feasible source
intensities and detector resolution

<mv tritium — Z ’Uez ;/ )



present limit (1) tritium < 2.2 €V Mainz & Troitzk
KATRIN's goal is to reach 250 meV, with 50 exclusion at 350 meV

-
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the measurement is clean, and one could get lucky ... but cosmology
may provide our best hope of reaching the 50 meV level



lepton number and the mass mechanism: neutrinoless B decay
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analogous to the search for the Higgs
- 2 mass mechanism connected to the simplest effective SM operator

- indirect sensitivity to near-GUT-scale physics
- direct sensitivity to heavy-V super-TeV physics

GERDA (’¢Ge), CUORE ('?%Te) currently limit

: 1 1
Maj 1
(m;, ™) < (0.3 —1.0) eV <mheavy> < 107 To

Should be attacked with urgency and at a more elevated scale

My view: a test of lepton number nonconservation, and possibly of
the hierarchy. More ambiguity in deducing V mass scale



effective mass <mg.> (eV)
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CP violation, 03, leptogenesis
- baryon number violation
- out of equilibrium interactions

From modeling the early universe

- C and CP violation: known SM C,}is sources appear insufficient
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Experimental parameters
- 2.5° off-axis relatively narrow v beam, yielding EP¢**~ 0.6 GeV

- the J-PARC :SuperK baseline, which then places the detector at
the Amas first oscillation maximum

- VvV, — V. appearance at a baseline much shorter than that
optimizing appearance via 02, so the effects of 013 can be seen

find 6 events when |.5 £ 0.3 would be expected were 012 =0 (2.5 0)

deduce 0.03(0.04) < sin” 2615 < 0.28(0.34) normal(inverted), dcp = 0

best value, normal hierarchy ~ 0.1 |

compares to CHOOZ, MINOS sin” 2015 < 0.15 and potentially
indicates significant future LBNE sensitivity to dcp = 0



Probably need to wait: values this large may be problematic elsewhere
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LBNE: hierarchy and CP violation
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700 kW beam, on axis, water/argon megadetector, beamline to “DUSEL”

1300 km of matter: sign of matter effects < normal/inverted;
5 years of Vs, ;S running v, — Ve VS U, — U, for @P

sounds like a good plan...
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Vacuum formula
Vy — Ve

nonzero!

Effects intertwined, as
two channels are not CP
conjugate when in matter
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broad band beam; baseline requires a spectrum centered at about 2 GeV
low statistics, some beam contamination, backgrounds from TT° production

must be able to identify events (quasielastic kinematics) for which one
can reconstruct the initial beam energy
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I)he |nnsel‘ Spa(c::e = To date, the major discoveries
uter space Lonnection have come from astro/cosmo

uncertain properties of SM vs
known/suspected to infuence

* baryon asymmetry

* BBN: the number of
relativistic degrees of
freedom, net lepton number

* DM density, DM effects on
expansion

* unique astrophysical
oscillation environments

- novel MSWV effects

- new level crossings

EVERYTHING ELSE,

DARK ENERGY INCLUDING ALL STARS, DARK MATTER
PLANETS, AND US

Plus incomparable sensitivity
to new (sterile) Vs




Absolute V mass scale: the one “known” component of DM is the v
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Thus V influences on structure evolve with both redshift Z and spatial
scale in a characteristic way:

3.5 1.9% 0.6

3.5 1.0% 0.03 | 1
Zm“ ~ 0.05 eV, z = 15 => power decrease ~ 2.1% for k > 0.6 Mpc

0.0 3.5% 0.6

leverage: alter baryons + CDM at the ~ % level, when Qy ~ 0.1%
typical combined analysis using existing data

> m,, <0.58 eV Komatsu etal. 2010, WMAP7 + SDSS LRG BAO + Ho

AP €,
(?>future - 1% - _120m = Zml/i ~ 11 meV

Hu, Eisenstein, & Tegmark |1998; Abazajian & Dodelson 2003



A series of Astro2010 white papers were submitted that examined
consequences of anticipated surveys, typically ~ X100 increase in statistics

- high redshift galaxy surveys, SDSS-IIl BOSS 10° QSO survey,
Planck CMB data, 21-cm radio telescopes with 0.1 km? collection,

weak lensing
- the statistical power for discovery at 50 meV were variously

estimated at |-70, depending on the assumptions made on
combining data sets

may be the field’s only nearterm strategy for determining Z m, (1) for
many scenarios, e.g., normal hierarchy with m,, (1) ~ 0

this is also an example of a scenario where one could be sensitive to
the hierarchy: inverted hierarchy requires Z m, (i) = 10 meV



Systematic contributions to the error! Harder to assess

The leverage one gains from combining different types of measurements
to increase the range in scale and Z, has the downside of increasing the
chances of systematic conflicts

One of the reasons that the kind of unified computational program
discussed here could be helpful: a team with the capacity to build, then
continue to develop, a standard cosmological model, to fully vary that
model, to apply it in a consistent way to disparate data sets, then to come
to consensus when discrepancies among data sets emerge

(reminiscent of the SSM, with its 19 free parameters)

my could be a inner space/outer space “home run,” impacting lab v
physics interpretations: B decay and LBNE (hierarchy)



BBN: issues include nN=ng/ny
consistency, the number of
relativistic species (e.g., sterile
neutrinos), the lepton number
asymmetry, and alternatives to
conventional abundance
determinations

An issue exists with ’Li, which
has a well-defined primordial
abundance plateau, corresponding

toan N ~ Ncme

The tension is ’Li - d, with
cosmology indicating that Li
is the outlier

Number Fraction Number Fraction 4He Mass Fraction

Baryon to Photon Ratio 7 X 10710
1 2 3 4 5 6 7 8

0.02
Baryon Density Qbh2

Nao Suzuki (Tytler group) 2006



Competing clocks of expansion driven by the relativistic species and
weak interactions driving n densities downward

I I
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Krauss,
5 Lunardini,
WMAP-7 Smith
4.34 + 0.87
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3.5
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BBN and CMB studies constrain the V number and asymmetry
weak hints that all is not right (but best to wait for Planck...)



Abundances: Potential to cross-check conventional low-Z abundance
determinations with high-Z, pre-stellar determinations

“He at recombination provides an earlier sink for electrons, altering the
electron density and thus the radiation scattering, and thus spectrum

(and ’Li provides a tiny amount of reheating)

Yp =0.326 + 0.075 (Komatsu et al. 2010: WMAP7 + BAO + Ho)

Deuterium abundance deduced from QSO absorption line systems =

Neen = assuming Ny = 3 = Yp = 0.2482 + 0.0007

Direct stellar determinations 0.25 + 0.004



Comments

The analogy between the proposal to better organize computational
cosmology, in response to rapidly advancing observations, is reminiscent to
the Fowler/Bahcall/lben/Sears initiative in 1962, to develop the

standard solar model in anticipating of future neutrino experiments

Provided a very important way to correlate data, to feed in steadily
improving microphysics (opacities, nuclear cross sections), to improve the
physics when new measurements (e.g. helioseismology) required this

Led to major discoveries
The scales of physics are different today, the computers more complex,

the computational teams much larger ... but the essential role of modeling
in data-driven fields remains



