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THE GLOBAL STRUCTURE OF THE RENORMALIZATION GROUP

Essential progress in particle physics may hinge on new quantum field

theories and the understanding of their renormalization group flows.

◮ A general program of studying these systematically in the large has

been initiated and produced several results and insights.

X Potential lattice applications.



The Gell-Mann–Low finite renormalization group equation (QED, 1954),

Ψ(g (t)) = λt−t0 Ψ(g) ,

(where t = lnµ of the distance/energy reference point; λ sets its scale;

g ≡ g(t0), @ arbitrary t0 = 0; Ψ is the RG “scaling function”, which

“rectifies” group flow to linear flow) is usually solved by integrating a

perturbative approximant to its algebra, the β-function,

dg
dt = β (g) ≡ (lnλ)Ψ(g) /Ψ′ (g) ,

in g, to obtain the full RG trajectory, for λ 6= 1,

g(t) = Ψ−1(λtΨ(g)) .



⋔ But there is a different way to calculate and analyze the RG

trajectory, based on the theory of this functional conjugacy equation,

which was actually introduced by E Schröder (1870). For a discrete leap

f(g) = g(1),

Ψ(f(g)) = λΨ(g) .

X In this conjugacy form, the global self-similar functional structure

of the RG trajectory is more apparent, and illuminates the interplay

between continuous and discrete rescaling (step-scaling f(g) in lat-

tice gauge theory or chaotic maps), often inaccessible to conventional

local relations.

; an analytic interpolate between g = g(0) and f(g) = g(1), just

from boundary (“holographic”, discrete) data, without the benefit of

a local propagation relation: g(t) = Ψ−1(λtΨ(g)).

◮ Essentially, taking arbitrary functional roots of an arbitrary func-

tion f ; e.g., rin(x), the functional square root (t = 1/2) of

rin(rin(x)) = sin(x) .



# E.g., can do this for the logistic map in the chaotic regime (imaginary

magnetic field Ising model), r = 4,

g(1) = 4g(1 − g) ≡ f1(g) ,

g(t + 1) = f1(g(t)) = f1(ft(g)) = ft+1(g), an associative and commu-

tative group composition, 	. #

g(t) = ft(g) = sin2(2t arcsin(
√

g)) ,

⊛ One can now infer the β-function (velocity) and hence manufacture

an underlying Hamiltonian dynamical system which yields this RG flow by



conserving energy. 	 Specific dynamics as an emergent phenomenon:

Analogy to inverse scattering: initial and final profiles yield a potential.

Such trajectories can be multivalued. E.g. for nonchaotic r = 11/4,

0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.2

-0.1

0.0

0.1

0.2

0.3

u

beta(u)

⊚ The method: Consider analytic ft (g) around a fixed point of

f(g). Without loss of generality, take the fixed point to be g = 0:

f(0) = 0, ; Ψ(0) = 0, and if Ψ′ (0) 6= 0,∞, then λ = f ′(0). Solve

for Ψ(g) in terms of f(g), if needs be by recursion of the respective series

coefficients. Finally, invert to obtain Ψ−1, and set λ → 1 if the problem

requires it—the answer may be convergent even if Ψ diverged for λ = 1.

The group orbit found is thus analytic around the fixed point g = 0.



⋆ The β-function is then an emergent feature,

β(g) = lnλ/(lnΨ(g))′ ,

(and, e.g., could be obtained from a lattice step-scaling function.)

⋔ The Meaning of the scaling variable Ψ: It’s but the conjugacy

variable transformation w = Ψ(g) which trivializes the action of

f(g) to a mere scaling w 7−→ λw, (“rectification”)

; trivial to iterate 	 ∀t:

g
f−→ f (g)

Ψ(x) ↓ ↓ Ψ(f (g))

w
λ−→ λw

N The composite map is then g 7−→ Ψ(f(g)) = λΨ(g).

y g(t) = Ψ−1(λtΨ(g)).

⊛ Moreover, nonlocal relations follow, such as the Julia equation,

β(g(1)) = ∂f
∂g β(g) ,

y Extrema of f(g) imply zeros of β(g(1)), before obtaining Ψ.



X Periodic Ψ−1s yield limit cycles even for a real coupling, cf. the

“Russian Doll” superconductivity model of LeClair, Román, and Sierra

(2004), Ψ−1 = tan log ; periodicity of the physics in t, the logarithm

of the scale µ:

g(t) = tan(t logλ + arctan g) .

; The physics repeats itself cyclically in self-similar modules.

◮ Constancy of Ψ−1, instead, yields fixed points. However, solutions

thus found may have novel, exotic features, including multiple branches:

zeroes of β do not necessarily signal fixed points of the flow, but instead

(if the acceleration or higher derivatives do not vanish), may only indicate

turning points of the RG trajectories, explored by the novel functional

conjugacy methods.

։ Revealed intriguing multivalued behaviors including chaotic (spin-

glass) RG flows.
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